Gravitational deflection in relativistic Newtonian dynamics

In a recent series of papers, the authors introduced a new Relativistic Newtonian Dynamics (RND) and tested its validity by the accurate prediction of the gravitational time dilation, the anomalous precession of Mercury, the periastron advance of any binary and the Shapiro time delay. This dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2017-03, Vol.117 (5), p.59001
Hauptverfasser: Friedman, Y., Steiner, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 59001
container_title Europhysics letters
container_volume 117
creator Friedman, Y.
Steiner, J. M.
description In a recent series of papers, the authors introduced a new Relativistic Newtonian Dynamics (RND) and tested its validity by the accurate prediction of the gravitational time dilation, the anomalous precession of Mercury, the periastron advance of any binary and the Shapiro time delay. This dynamics incorporates the influence of potential energy on spacetime in Newtonian dynamics and, unlike Einstein's General Relativity, treats gravity as a force without the need to curve spacetime. In this paper, this dynamics is applied to derive the gravitational deflection of both objects with non-zero mass and of massless particles passing the strong gravitating field of a massive body. Equations for the trajectory and the resulting analytical expressions for the deflection angle, in terms of the distance and velocity at the point of closest approach to the massive object, were derived in both cases. It is shown that with a carefully defined limit, the trajectory of a massless particle is the limiting case of that of an object with non-zero mass. In the "weak" deflection limit, the derived expression for the deflection angle of a massless particle (photon) reproduces the experimentally tested Einstein's formula for weak gravitational lensing of a light ray, thereby providing another test for the validity of the RND.
doi_str_mv 10.1209/0295-5075/117/59001
format Article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_80W_BHLMWXVG_Z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110109826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a8d19ee8039caeb5aeb2e788a202c296171f4aec23433eba0e104c5ebdb2c2dd3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFwiceAU4rXz44gTVNAiFbgARVws19lIKWkS7LTQt8chVbkgDitrtd-MxkPIKdALYDQNKEsjP6JJFAAkQZRSCntkAEzEfiiicJ8MdsQhObJ24QAQEA_I5dioddGqtqgrVXoZ5iXqbvGKyjNYusO6sG2hvQf8bOuqUJWXbSq1LLQ9Jge5Ki2ebN8heb69eRpN_Onj-G50NfU1F0nrK5FBiigoT7XCeeSGYSKEYpRplsaQQB4q1IyHnONcUQQa6gjn2dzds4wPyVnv25j6Y4W2lYt6ZVxcKzkABZoKFjuK95Q2tbUGc9mYYqnMRgKVXUuy60B2HUjXkvxpyan8XuU-iV87iTLvMk64QwWdyevJ9H72-jKWb44_3_J18xsDm7L37F1lk-WODP4g_8vyDQXkhSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110109826</pqid></control><display><type>article</type><title>Gravitational deflection in relativistic Newtonian dynamics</title><source>IOP Publishing Journals</source><creator>Friedman, Y. ; Steiner, J. M.</creator><creatorcontrib>Friedman, Y. ; Steiner, J. M.</creatorcontrib><description>In a recent series of papers, the authors introduced a new Relativistic Newtonian Dynamics (RND) and tested its validity by the accurate prediction of the gravitational time dilation, the anomalous precession of Mercury, the periastron advance of any binary and the Shapiro time delay. This dynamics incorporates the influence of potential energy on spacetime in Newtonian dynamics and, unlike Einstein's General Relativity, treats gravity as a force without the need to curve spacetime. In this paper, this dynamics is applied to derive the gravitational deflection of both objects with non-zero mass and of massless particles passing the strong gravitating field of a massive body. Equations for the trajectory and the resulting analytical expressions for the deflection angle, in terms of the distance and velocity at the point of closest approach to the massive object, were derived in both cases. It is shown that with a carefully defined limit, the trajectory of a massless particle is the limiting case of that of an object with non-zero mass. In the "weak" deflection limit, the derived expression for the deflection angle of a massless particle (photon) reproduces the experimentally tested Einstein's formula for weak gravitational lensing of a light ray, thereby providing another test for the validity of the RND.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/117/59001</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>95.10.Eg ; 95.30.Sf ; 98.62.Sb ; Deflection ; Dynamics ; Gravitational lenses ; Mercury (planet) ; Potential energy ; Relativistic effects ; Relativity ; Spacetime ; Time lag ; Trajectories</subject><ispartof>Europhysics letters, 2017-03, Vol.117 (5), p.59001</ispartof><rights>Copyright © EPLA, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a8d19ee8039caeb5aeb2e788a202c296171f4aec23433eba0e104c5ebdb2c2dd3</citedby><cites>FETCH-LOGICAL-c387t-a8d19ee8039caeb5aeb2e788a202c296171f4aec23433eba0e104c5ebdb2c2dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/117/59001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Friedman, Y.</creatorcontrib><creatorcontrib>Steiner, J. M.</creatorcontrib><title>Gravitational deflection in relativistic Newtonian dynamics</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>In a recent series of papers, the authors introduced a new Relativistic Newtonian Dynamics (RND) and tested its validity by the accurate prediction of the gravitational time dilation, the anomalous precession of Mercury, the periastron advance of any binary and the Shapiro time delay. This dynamics incorporates the influence of potential energy on spacetime in Newtonian dynamics and, unlike Einstein's General Relativity, treats gravity as a force without the need to curve spacetime. In this paper, this dynamics is applied to derive the gravitational deflection of both objects with non-zero mass and of massless particles passing the strong gravitating field of a massive body. Equations for the trajectory and the resulting analytical expressions for the deflection angle, in terms of the distance and velocity at the point of closest approach to the massive object, were derived in both cases. It is shown that with a carefully defined limit, the trajectory of a massless particle is the limiting case of that of an object with non-zero mass. In the "weak" deflection limit, the derived expression for the deflection angle of a massless particle (photon) reproduces the experimentally tested Einstein's formula for weak gravitational lensing of a light ray, thereby providing another test for the validity of the RND.</description><subject>95.10.Eg</subject><subject>95.30.Sf</subject><subject>98.62.Sb</subject><subject>Deflection</subject><subject>Dynamics</subject><subject>Gravitational lenses</subject><subject>Mercury (planet)</subject><subject>Potential energy</subject><subject>Relativistic effects</subject><subject>Relativity</subject><subject>Spacetime</subject><subject>Time lag</subject><subject>Trajectories</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFwiceAU4rXz44gTVNAiFbgARVws19lIKWkS7LTQt8chVbkgDitrtd-MxkPIKdALYDQNKEsjP6JJFAAkQZRSCntkAEzEfiiicJ8MdsQhObJ24QAQEA_I5dioddGqtqgrVXoZ5iXqbvGKyjNYusO6sG2hvQf8bOuqUJWXbSq1LLQ9Jge5Ki2ebN8heb69eRpN_Onj-G50NfU1F0nrK5FBiigoT7XCeeSGYSKEYpRplsaQQB4q1IyHnONcUQQa6gjn2dzds4wPyVnv25j6Y4W2lYt6ZVxcKzkABZoKFjuK95Q2tbUGc9mYYqnMRgKVXUuy60B2HUjXkvxpyan8XuU-iV87iTLvMk64QwWdyevJ9H72-jKWb44_3_J18xsDm7L37F1lk-WODP4g_8vyDQXkhSs</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Friedman, Y.</creator><creator>Steiner, J. M.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201703</creationdate><title>Gravitational deflection in relativistic Newtonian dynamics</title><author>Friedman, Y. ; Steiner, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a8d19ee8039caeb5aeb2e788a202c296171f4aec23433eba0e104c5ebdb2c2dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>95.10.Eg</topic><topic>95.30.Sf</topic><topic>98.62.Sb</topic><topic>Deflection</topic><topic>Dynamics</topic><topic>Gravitational lenses</topic><topic>Mercury (planet)</topic><topic>Potential energy</topic><topic>Relativistic effects</topic><topic>Relativity</topic><topic>Spacetime</topic><topic>Time lag</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Y.</creatorcontrib><creatorcontrib>Steiner, J. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedman, Y.</au><au>Steiner, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational deflection in relativistic Newtonian dynamics</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2017-03</date><risdate>2017</risdate><volume>117</volume><issue>5</issue><spage>59001</spage><pages>59001-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>In a recent series of papers, the authors introduced a new Relativistic Newtonian Dynamics (RND) and tested its validity by the accurate prediction of the gravitational time dilation, the anomalous precession of Mercury, the periastron advance of any binary and the Shapiro time delay. This dynamics incorporates the influence of potential energy on spacetime in Newtonian dynamics and, unlike Einstein's General Relativity, treats gravity as a force without the need to curve spacetime. In this paper, this dynamics is applied to derive the gravitational deflection of both objects with non-zero mass and of massless particles passing the strong gravitating field of a massive body. Equations for the trajectory and the resulting analytical expressions for the deflection angle, in terms of the distance and velocity at the point of closest approach to the massive object, were derived in both cases. It is shown that with a carefully defined limit, the trajectory of a massless particle is the limiting case of that of an object with non-zero mass. In the "weak" deflection limit, the derived expression for the deflection angle of a massless particle (photon) reproduces the experimentally tested Einstein's formula for weak gravitational lensing of a light ray, thereby providing another test for the validity of the RND.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/117/59001</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2017-03, Vol.117 (5), p.59001
issn 0295-5075
1286-4854
language eng
recordid cdi_istex_primary_ark_67375_80W_BHLMWXVG_Z
source IOP Publishing Journals
subjects 95.10.Eg
95.30.Sf
98.62.Sb
Deflection
Dynamics
Gravitational lenses
Mercury (planet)
Potential energy
Relativistic effects
Relativity
Spacetime
Time lag
Trajectories
title Gravitational deflection in relativistic Newtonian dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20deflection%20in%20relativistic%20Newtonian%20dynamics&rft.jtitle=Europhysics%20letters&rft.au=Friedman,%20Y.&rft.date=2017-03&rft.volume=117&rft.issue=5&rft.spage=59001&rft.pages=59001-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/117/59001&rft_dat=%3Cproquest_istex%3E3110109826%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110109826&rft_id=info:pmid/&rfr_iscdi=true