Extruding the vortex lattice: Two reacting populations of dislocations

A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2019-04, Vol.126 (1), p.16002
Hauptverfasser: Watkins, J. S., Wilkin, N. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 16002
container_title Europhysics letters
container_volume 126
creator Watkins, J. S.
Wilkin, N. K.
description A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation.
doi_str_mv 10.1209/0295-5075/126/16002
format Article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_80W_B1P1GNF5_J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110088778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwBFwqceBUZidNmnKDaRugCTgMcYzSNoWOspSkhfH2dBSNC-JkWf5-2_oIOUY4QwrJCGjCQw4xHyEVIxQAdIcMkEoRRpJHu2SwJfbJgfdLAESJYkCmk3Xj2rxcPQXNswnerWvMOqh005SZOQ8WHzZwRmfNBqht3XaT0q58YIsgL31ls74_JHuFrrw5-qlD8jCdLMZX4fxudj2-mIdZxGgTFsxISDORpFmMaS4kN7lOYpNGNNUipzrngIwbFgnDdBxhzmURAWQ0RZCpYENy0u-tnX1rjW_U0rZu1Z1UDBFAyjiWHcV6KnPWe2cKVbvyVbtPhaA2wtRGh9ro6FqhvoV1qbBPlb5zsI1o96JEzDpUwqO6xHuc3U65uun40Q9v6983_r9w-kfC1FXP9JSq84J9AYSsh9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110088778</pqid></control><display><type>article</type><title>Extruding the vortex lattice: Two reacting populations of dislocations</title><source>IOP Publishing Journals</source><creator>Watkins, J. S. ; Wilkin, N. K.</creator><creatorcontrib>Watkins, J. S. ; Wilkin, N. K.</creatorcontrib><description>A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation.</description><identifier>ISSN: 0295-5075</identifier><identifier>ISSN: 1286-4854</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/126/16002</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>45.70.Vn ; 61.72.Lk ; 74.25.Uv ; Bulk density ; Concentration gradient ; Continuum flow ; Controllability ; Deformation mechanisms ; Density gradients ; Dislocation density ; Plastic deformation ; Plastic flow ; Populations ; Shear modulus ; Shear stress ; Solid phases ; Stress relaxation ; Unit cell ; Vortices</subject><ispartof>Europhysics letters, 2019-04, Vol.126 (1), p.16002</ispartof><rights>Copyright © EPLA, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</citedby><cites>FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/126/16002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Watkins, J. S.</creatorcontrib><creatorcontrib>Wilkin, N. K.</creatorcontrib><title>Extruding the vortex lattice: Two reacting populations of dislocations</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation.</description><subject>45.70.Vn</subject><subject>61.72.Lk</subject><subject>74.25.Uv</subject><subject>Bulk density</subject><subject>Concentration gradient</subject><subject>Continuum flow</subject><subject>Controllability</subject><subject>Deformation mechanisms</subject><subject>Density gradients</subject><subject>Dislocation density</subject><subject>Plastic deformation</subject><subject>Plastic flow</subject><subject>Populations</subject><subject>Shear modulus</subject><subject>Shear stress</subject><subject>Solid phases</subject><subject>Stress relaxation</subject><subject>Unit cell</subject><subject>Vortices</subject><issn>0295-5075</issn><issn>1286-4854</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwBFwqceBUZidNmnKDaRugCTgMcYzSNoWOspSkhfH2dBSNC-JkWf5-2_oIOUY4QwrJCGjCQw4xHyEVIxQAdIcMkEoRRpJHu2SwJfbJgfdLAESJYkCmk3Xj2rxcPQXNswnerWvMOqh005SZOQ8WHzZwRmfNBqht3XaT0q58YIsgL31ls74_JHuFrrw5-qlD8jCdLMZX4fxudj2-mIdZxGgTFsxISDORpFmMaS4kN7lOYpNGNNUipzrngIwbFgnDdBxhzmURAWQ0RZCpYENy0u-tnX1rjW_U0rZu1Z1UDBFAyjiWHcV6KnPWe2cKVbvyVbtPhaA2wtRGh9ro6FqhvoV1qbBPlb5zsI1o96JEzDpUwqO6xHuc3U65uun40Q9v6983_r9w-kfC1FXP9JSq84J9AYSsh9I</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Watkins, J. S.</creator><creator>Wilkin, N. K.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190401</creationdate><title>Extruding the vortex lattice: Two reacting populations of dislocations</title><author>Watkins, J. S. ; Wilkin, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45.70.Vn</topic><topic>61.72.Lk</topic><topic>74.25.Uv</topic><topic>Bulk density</topic><topic>Concentration gradient</topic><topic>Continuum flow</topic><topic>Controllability</topic><topic>Deformation mechanisms</topic><topic>Density gradients</topic><topic>Dislocation density</topic><topic>Plastic deformation</topic><topic>Plastic flow</topic><topic>Populations</topic><topic>Shear modulus</topic><topic>Shear stress</topic><topic>Solid phases</topic><topic>Stress relaxation</topic><topic>Unit cell</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watkins, J. S.</creatorcontrib><creatorcontrib>Wilkin, N. K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watkins, J. S.</au><au>Wilkin, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extruding the vortex lattice: Two reacting populations of dislocations</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>126</volume><issue>1</issue><spage>16002</spage><pages>16002-</pages><issn>0295-5075</issn><issn>1286-4854</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/126/16002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2019-04, Vol.126 (1), p.16002
issn 0295-5075
1286-4854
1286-4854
language eng
recordid cdi_istex_primary_ark_67375_80W_B1P1GNF5_J
source IOP Publishing Journals
subjects 45.70.Vn
61.72.Lk
74.25.Uv
Bulk density
Concentration gradient
Continuum flow
Controllability
Deformation mechanisms
Density gradients
Dislocation density
Plastic deformation
Plastic flow
Populations
Shear modulus
Shear stress
Solid phases
Stress relaxation
Unit cell
Vortices
title Extruding the vortex lattice: Two reacting populations of dislocations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extruding%20the%20vortex%20lattice:%20Two%20reacting%20populations%20of%20dislocations&rft.jtitle=Europhysics%20letters&rft.au=Watkins,%20J.%20S.&rft.date=2019-04-01&rft.volume=126&rft.issue=1&rft.spage=16002&rft.pages=16002-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/126/16002&rft_dat=%3Cproquest_istex%3E3110088778%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110088778&rft_id=info:pmid/&rfr_iscdi=true