Extruding the vortex lattice: Two reacting populations of dislocations
A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y....
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2019-04, Vol.126 (1), p.16002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16002 |
container_title | Europhysics letters |
container_volume | 126 |
creator | Watkins, J. S. Wilkin, N. K. |
description | A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation. |
doi_str_mv | 10.1209/0295-5075/126/16002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_80W_B1P1GNF5_J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110088778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwBFwqceBUZidNmnKDaRugCTgMcYzSNoWOspSkhfH2dBSNC-JkWf5-2_oIOUY4QwrJCGjCQw4xHyEVIxQAdIcMkEoRRpJHu2SwJfbJgfdLAESJYkCmk3Xj2rxcPQXNswnerWvMOqh005SZOQ8WHzZwRmfNBqht3XaT0q58YIsgL31ls74_JHuFrrw5-qlD8jCdLMZX4fxudj2-mIdZxGgTFsxISDORpFmMaS4kN7lOYpNGNNUipzrngIwbFgnDdBxhzmURAWQ0RZCpYENy0u-tnX1rjW_U0rZu1Z1UDBFAyjiWHcV6KnPWe2cKVbvyVbtPhaA2wtRGh9ro6FqhvoV1qbBPlb5zsI1o96JEzDpUwqO6xHuc3U65uun40Q9v6983_r9w-kfC1FXP9JSq84J9AYSsh9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110088778</pqid></control><display><type>article</type><title>Extruding the vortex lattice: Two reacting populations of dislocations</title><source>IOP Publishing Journals</source><creator>Watkins, J. S. ; Wilkin, N. K.</creator><creatorcontrib>Watkins, J. S. ; Wilkin, N. K.</creatorcontrib><description>A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation.</description><identifier>ISSN: 0295-5075</identifier><identifier>ISSN: 1286-4854</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/126/16002</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>45.70.Vn ; 61.72.Lk ; 74.25.Uv ; Bulk density ; Concentration gradient ; Continuum flow ; Controllability ; Deformation mechanisms ; Density gradients ; Dislocation density ; Plastic deformation ; Plastic flow ; Populations ; Shear modulus ; Shear stress ; Solid phases ; Stress relaxation ; Unit cell ; Vortices</subject><ispartof>Europhysics letters, 2019-04, Vol.126 (1), p.16002</ispartof><rights>Copyright © EPLA, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</citedby><cites>FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/126/16002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Watkins, J. S.</creatorcontrib><creatorcontrib>Wilkin, N. K.</creatorcontrib><title>Extruding the vortex lattice: Two reacting populations of dislocations</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation.</description><subject>45.70.Vn</subject><subject>61.72.Lk</subject><subject>74.25.Uv</subject><subject>Bulk density</subject><subject>Concentration gradient</subject><subject>Continuum flow</subject><subject>Controllability</subject><subject>Deformation mechanisms</subject><subject>Density gradients</subject><subject>Dislocation density</subject><subject>Plastic deformation</subject><subject>Plastic flow</subject><subject>Populations</subject><subject>Shear modulus</subject><subject>Shear stress</subject><subject>Solid phases</subject><subject>Stress relaxation</subject><subject>Unit cell</subject><subject>Vortices</subject><issn>0295-5075</issn><issn>1286-4854</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwBFwqceBUZidNmnKDaRugCTgMcYzSNoWOspSkhfH2dBSNC-JkWf5-2_oIOUY4QwrJCGjCQw4xHyEVIxQAdIcMkEoRRpJHu2SwJfbJgfdLAESJYkCmk3Xj2rxcPQXNswnerWvMOqh005SZOQ8WHzZwRmfNBqht3XaT0q58YIsgL31ls74_JHuFrrw5-qlD8jCdLMZX4fxudj2-mIdZxGgTFsxISDORpFmMaS4kN7lOYpNGNNUipzrngIwbFgnDdBxhzmURAWQ0RZCpYENy0u-tnX1rjW_U0rZu1Z1UDBFAyjiWHcV6KnPWe2cKVbvyVbtPhaA2wtRGh9ro6FqhvoV1qbBPlb5zsI1o96JEzDpUwqO6xHuc3U65uun40Q9v6983_r9w-kfC1FXP9JSq84J9AYSsh9I</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Watkins, J. S.</creator><creator>Wilkin, N. K.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190401</creationdate><title>Extruding the vortex lattice: Two reacting populations of dislocations</title><author>Watkins, J. S. ; Wilkin, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-f3e80bc69bc71bd685eda97eb42ba6d2ad50135e346e3a741d58f400c2b108b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45.70.Vn</topic><topic>61.72.Lk</topic><topic>74.25.Uv</topic><topic>Bulk density</topic><topic>Concentration gradient</topic><topic>Continuum flow</topic><topic>Controllability</topic><topic>Deformation mechanisms</topic><topic>Density gradients</topic><topic>Dislocation density</topic><topic>Plastic deformation</topic><topic>Plastic flow</topic><topic>Populations</topic><topic>Shear modulus</topic><topic>Shear stress</topic><topic>Solid phases</topic><topic>Stress relaxation</topic><topic>Unit cell</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watkins, J. S.</creatorcontrib><creatorcontrib>Wilkin, N. K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watkins, J. S.</au><au>Wilkin, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extruding the vortex lattice: Two reacting populations of dislocations</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>126</volume><issue>1</issue><spage>16002</spage><pages>16002-</pages><issn>0295-5075</issn><issn>1286-4854</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep. Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I. et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C: Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations of dislocations. One population facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density variation.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/126/16002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2019-04, Vol.126 (1), p.16002 |
issn | 0295-5075 1286-4854 1286-4854 |
language | eng |
recordid | cdi_istex_primary_ark_67375_80W_B1P1GNF5_J |
source | IOP Publishing Journals |
subjects | 45.70.Vn 61.72.Lk 74.25.Uv Bulk density Concentration gradient Continuum flow Controllability Deformation mechanisms Density gradients Dislocation density Plastic deformation Plastic flow Populations Shear modulus Shear stress Solid phases Stress relaxation Unit cell Vortices |
title | Extruding the vortex lattice: Two reacting populations of dislocations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extruding%20the%20vortex%20lattice:%20Two%20reacting%20populations%20of%20dislocations&rft.jtitle=Europhysics%20letters&rft.au=Watkins,%20J.%20S.&rft.date=2019-04-01&rft.volume=126&rft.issue=1&rft.spage=16002&rft.pages=16002-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/126/16002&rft_dat=%3Cproquest_istex%3E3110088778%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110088778&rft_id=info:pmid/&rfr_iscdi=true |