Solution of one-dimensional Dirac equation via Poincaré map
We solve the general one-dimensional Dirac equation using a “Poincaré map” approach which avoids any approximation to the spacial derivatives and reduces the problem to a simple recursive relation which is very practical from the numerical implementation point of view. To test the efficiency and rap...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2011-07, Vol.95 (1), p.17009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 17009 |
container_title | Europhysics letters |
container_volume | 95 |
creator | Bahlouli, Hocine Choubabi, El Bouâzzaoui Jellal, Ahmed |
description | We solve the general one-dimensional Dirac equation using a “Poincaré map” approach which avoids any approximation to the spacial derivatives and reduces the problem to a simple recursive relation which is very practical from the numerical implementation point of view. To test the efficiency and rapid convergence of this approach we apply it to a vector coupling Woods-Saxon potential, which is exactly solvable. Comparison with available analytical results is impressive and hence validates the accuracy and efficiency of this method. |
doi_str_mv | 10.1209/0295-5075/95/17009 |
format | Article |
fullrecord | <record><control><sourceid>istex_iop_p</sourceid><recordid>TN_cdi_istex_primary_ark_67375_80W_86KTGQPW_D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_86KTGQPW_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-1e79879bd63177f269856d8a5df7cd2fd7b46c5011ff2f960449761b64d9d2d73</originalsourceid><addsrcrecordid>eNp9j81KAzEUhYMoWKsv4Gr2Eptk8gtupNUqFqxY6TKkkwSi7WTMtKKP5HP4Yk47pdSNqwOX73zcA8A5RpeYINVDRDHIkGA9xXpYIKQOQAcTySGVjB6Czg44Bid1_YoQxhLzDrh6jvPVMsQyiz6LpYM2LFxZNwczzwYhmSJz7yuzIT6CycYxlIVJP9_ZwlSn4Mibee3OttkFL7c3k_4dHD0O7_vXI1hQlC8hdkJJoWaW51gIT7iSjFtpmPWisMRbMaO8YM1L3hOvOKJUCY5nnFpliRV5F5DWW6RY18l5XaWwMOlLY6TX-_V6nl7P001u9jcl2JZCvXSfu4ZJb5qLvCElmmrJHybDp_FUDxr-YsvHakf_9bZmXVm_Z9-j__nmF5PYdzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution of one-dimensional Dirac equation via Poincaré map</title><source>IOP Publishing Journals</source><creator>Bahlouli, Hocine ; Choubabi, El Bouâzzaoui ; Jellal, Ahmed</creator><creatorcontrib>Bahlouli, Hocine ; Choubabi, El Bouâzzaoui ; Jellal, Ahmed</creatorcontrib><description>We solve the general one-dimensional Dirac equation using a “Poincaré map” approach which avoids any approximation to the spacial derivatives and reduces the problem to a simple recursive relation which is very practical from the numerical implementation point of view. To test the efficiency and rapid convergence of this approach we apply it to a vector coupling Woods-Saxon potential, which is exactly solvable. Comparison with available analytical results is impressive and hence validates the accuracy and efficiency of this method.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/95/17009</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>11.80.-m ; 73.23.-b ; 73.63.-b</subject><ispartof>Europhysics letters, 2011-07, Vol.95 (1), p.17009</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-1e79879bd63177f269856d8a5df7cd2fd7b46c5011ff2f960449761b64d9d2d73</citedby><cites>FETCH-LOGICAL-c403t-1e79879bd63177f269856d8a5df7cd2fd7b46c5011ff2f960449761b64d9d2d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/95/17009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53891</link.rule.ids></links><search><creatorcontrib>Bahlouli, Hocine</creatorcontrib><creatorcontrib>Choubabi, El Bouâzzaoui</creatorcontrib><creatorcontrib>Jellal, Ahmed</creatorcontrib><title>Solution of one-dimensional Dirac equation via Poincaré map</title><title>Europhysics letters</title><description>We solve the general one-dimensional Dirac equation using a “Poincaré map” approach which avoids any approximation to the spacial derivatives and reduces the problem to a simple recursive relation which is very practical from the numerical implementation point of view. To test the efficiency and rapid convergence of this approach we apply it to a vector coupling Woods-Saxon potential, which is exactly solvable. Comparison with available analytical results is impressive and hence validates the accuracy and efficiency of this method.</description><subject>11.80.-m</subject><subject>73.23.-b</subject><subject>73.63.-b</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j81KAzEUhYMoWKsv4Gr2Eptk8gtupNUqFqxY6TKkkwSi7WTMtKKP5HP4Yk47pdSNqwOX73zcA8A5RpeYINVDRDHIkGA9xXpYIKQOQAcTySGVjB6Czg44Bid1_YoQxhLzDrh6jvPVMsQyiz6LpYM2LFxZNwczzwYhmSJz7yuzIT6CycYxlIVJP9_ZwlSn4Mibee3OttkFL7c3k_4dHD0O7_vXI1hQlC8hdkJJoWaW51gIT7iSjFtpmPWisMRbMaO8YM1L3hOvOKJUCY5nnFpliRV5F5DWW6RY18l5XaWwMOlLY6TX-_V6nl7P001u9jcl2JZCvXSfu4ZJb5qLvCElmmrJHybDp_FUDxr-YsvHakf_9bZmXVm_Z9-j__nmF5PYdzE</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Bahlouli, Hocine</creator><creator>Choubabi, El Bouâzzaoui</creator><creator>Jellal, Ahmed</creator><general>IOP Publishing</general><general>EPS, SIF, EDP Sciences and IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110701</creationdate><title>Solution of one-dimensional Dirac equation via Poincaré map</title><author>Bahlouli, Hocine ; Choubabi, El Bouâzzaoui ; Jellal, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-1e79879bd63177f269856d8a5df7cd2fd7b46c5011ff2f960449761b64d9d2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>11.80.-m</topic><topic>73.23.-b</topic><topic>73.63.-b</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahlouli, Hocine</creatorcontrib><creatorcontrib>Choubabi, El Bouâzzaoui</creatorcontrib><creatorcontrib>Jellal, Ahmed</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahlouli, Hocine</au><au>Choubabi, El Bouâzzaoui</au><au>Jellal, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of one-dimensional Dirac equation via Poincaré map</atitle><jtitle>Europhysics letters</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>95</volume><issue>1</issue><spage>17009</spage><pages>17009-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>We solve the general one-dimensional Dirac equation using a “Poincaré map” approach which avoids any approximation to the spacial derivatives and reduces the problem to a simple recursive relation which is very practical from the numerical implementation point of view. To test the efficiency and rapid convergence of this approach we apply it to a vector coupling Woods-Saxon potential, which is exactly solvable. Comparison with available analytical results is impressive and hence validates the accuracy and efficiency of this method.</abstract><pub>IOP Publishing</pub><doi>10.1209/0295-5075/95/17009</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2011-07, Vol.95 (1), p.17009 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_istex_primary_ark_67375_80W_86KTGQPW_D |
source | IOP Publishing Journals |
subjects | 11.80.-m 73.23.-b 73.63.-b |
title | Solution of one-dimensional Dirac equation via Poincaré map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20one-dimensional%20Dirac%20equation%20via%20Poincar%C3%A9%20map&rft.jtitle=Europhysics%20letters&rft.au=Bahlouli,%20Hocine&rft.date=2011-07-01&rft.volume=95&rft.issue=1&rft.spage=17009&rft.pages=17009-&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/0295-5075/95/17009&rft_dat=%3Cistex_iop_p%3Eark_67375_80W_86KTGQPW_D%3C/istex_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |