The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters

We are adapting the global circulation model (GCM) of the UK Met Office, the so-called unified model (UM), for the study of hot Jupiters. In this work we demonstrate the successful adaptation of the most sophisticated dynamical core, the component of the GCM which solves the equations of motion for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2014-01, Vol.561
Hauptverfasser: Mayne, Nathan J., Baraffe, Isabelle, Acreman, David M., Smith, Chris, Browning, Matthew K., Amundsen, David Skålid, Wood, Nigel, Thuburn, John, Jackson, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 561
creator Mayne, Nathan J.
Baraffe, Isabelle
Acreman, David M.
Smith, Chris
Browning, Matthew K.
Amundsen, David Skålid
Wood, Nigel
Thuburn, John
Jackson, David R.
description We are adapting the global circulation model (GCM) of the UK Met Office, the so-called unified model (UM), for the study of hot Jupiters. In this work we demonstrate the successful adaptation of the most sophisticated dynamical core, the component of the GCM which solves the equations of motion for the atmosphere, available within the UM, ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment). Within the same numerical scheme ENDGame supports solution to the dynamical equations under varying degrees of simplification. We present results from a simple, shallow (in atmospheric domain) hot Jupiter model (SHJ), and a more realistic (with a deeper atmosphere) HD 209458b test case. For both test cases we find that the large-scale, time-averaged (over the 1200 days prescribed test period), dynamical state of the atmosphere is relatively insensitive to the level of simplification of the dynamical equations. However, problems exist when attempting to reproduce the results for these test cases derived from other models. For the SHJ case the lower (and upper) boundary intersects the dominant dynamical features of the atmosphere meaning the results are heavily dependent on the boundary conditions. For the HD 209458b test case, when using the more complete dynamical models, the atmosphere is still clearly evolving after 1200 days, and in a transient state. Solving the complete (deep atmosphere and non-hydrostatic) dynamical equations allows exchange between the vertical and horizontal momentum of the atmosphere, via Coriolis and metric terms. Subsequently, interaction between the upper atmosphere and the deeper more slowly evolving (radiatively inactive) atmosphere significantly alters the results, and acts over timescales longer than 1200 days.
doi_str_mv 10.1051/0004-6361/201322174
format Article
fullrecord <record><control><sourceid>istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_80W_3RCM0HSS_J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_3RCM0HSS_J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2694-b5743a0c320569f17d2da8d5522e2b2849e8f6750895bffcc9af899a43927dc73</originalsourceid><addsrcrecordid>eNo9zN1KwzAAhuEgCs7pFXiSC1hcfpvmUIY6x0RwEw9Lmh9bTZeStODw5p0oO_r44OUB4JrgG4IFmWOMOSpYQeYUE0YpkfwETAhnFGHJi1MwORbn4CLnj8OlpGQT8L1tHBx3rW-dhV20Lsyghn4MYY9M7Prkcm7r4GZwF3eo2dsU86CH1sygda6Heuhi7huXHHwPsdYBmjaZMRySuDuCfR9-_SHCJg5wNfbt4FK-BGdeh-yu_ncKXu_vtoslWj8_PC5u18jQQnFUC8mZxoZRLArlibTU6tIKQamjNS25cqUvpMClErX3xijtS6U0Z4pKaySbAvTntnlwX1Wf2k6nfaXTZ1VIJkVV4reKvSye8HKzqVbsB_B-ZCs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mayne, Nathan J. ; Baraffe, Isabelle ; Acreman, David M. ; Smith, Chris ; Browning, Matthew K. ; Amundsen, David Skålid ; Wood, Nigel ; Thuburn, John ; Jackson, David R.</creator><creatorcontrib>Mayne, Nathan J. ; Baraffe, Isabelle ; Acreman, David M. ; Smith, Chris ; Browning, Matthew K. ; Amundsen, David Skålid ; Wood, Nigel ; Thuburn, John ; Jackson, David R.</creatorcontrib><description>We are adapting the global circulation model (GCM) of the UK Met Office, the so-called unified model (UM), for the study of hot Jupiters. In this work we demonstrate the successful adaptation of the most sophisticated dynamical core, the component of the GCM which solves the equations of motion for the atmosphere, available within the UM, ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment). Within the same numerical scheme ENDGame supports solution to the dynamical equations under varying degrees of simplification. We present results from a simple, shallow (in atmospheric domain) hot Jupiter model (SHJ), and a more realistic (with a deeper atmosphere) HD 209458b test case. For both test cases we find that the large-scale, time-averaged (over the 1200 days prescribed test period), dynamical state of the atmosphere is relatively insensitive to the level of simplification of the dynamical equations. However, problems exist when attempting to reproduce the results for these test cases derived from other models. For the SHJ case the lower (and upper) boundary intersects the dominant dynamical features of the atmosphere meaning the results are heavily dependent on the boundary conditions. For the HD 209458b test case, when using the more complete dynamical models, the atmosphere is still clearly evolving after 1200 days, and in a transient state. Solving the complete (deep atmosphere and non-hydrostatic) dynamical equations allows exchange between the vertical and horizontal momentum of the atmosphere, via Coriolis and metric terms. Subsequently, interaction between the upper atmosphere and the deeper more slowly evolving (radiatively inactive) atmosphere significantly alters the results, and acts over timescales longer than 1200 days.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201322174</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>hydrodynamics ; methods: numerical ; planets and satellites: atmospheres</subject><ispartof>Astronomy and astrophysics (Berlin), 2014-01, Vol.561</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2694-b5743a0c320569f17d2da8d5522e2b2849e8f6750895bffcc9af899a43927dc73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mayne, Nathan J.</creatorcontrib><creatorcontrib>Baraffe, Isabelle</creatorcontrib><creatorcontrib>Acreman, David M.</creatorcontrib><creatorcontrib>Smith, Chris</creatorcontrib><creatorcontrib>Browning, Matthew K.</creatorcontrib><creatorcontrib>Amundsen, David Skålid</creatorcontrib><creatorcontrib>Wood, Nigel</creatorcontrib><creatorcontrib>Thuburn, John</creatorcontrib><creatorcontrib>Jackson, David R.</creatorcontrib><title>The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters</title><title>Astronomy and astrophysics (Berlin)</title><description>We are adapting the global circulation model (GCM) of the UK Met Office, the so-called unified model (UM), for the study of hot Jupiters. In this work we demonstrate the successful adaptation of the most sophisticated dynamical core, the component of the GCM which solves the equations of motion for the atmosphere, available within the UM, ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment). Within the same numerical scheme ENDGame supports solution to the dynamical equations under varying degrees of simplification. We present results from a simple, shallow (in atmospheric domain) hot Jupiter model (SHJ), and a more realistic (with a deeper atmosphere) HD 209458b test case. For both test cases we find that the large-scale, time-averaged (over the 1200 days prescribed test period), dynamical state of the atmosphere is relatively insensitive to the level of simplification of the dynamical equations. However, problems exist when attempting to reproduce the results for these test cases derived from other models. For the SHJ case the lower (and upper) boundary intersects the dominant dynamical features of the atmosphere meaning the results are heavily dependent on the boundary conditions. For the HD 209458b test case, when using the more complete dynamical models, the atmosphere is still clearly evolving after 1200 days, and in a transient state. Solving the complete (deep atmosphere and non-hydrostatic) dynamical equations allows exchange between the vertical and horizontal momentum of the atmosphere, via Coriolis and metric terms. Subsequently, interaction between the upper atmosphere and the deeper more slowly evolving (radiatively inactive) atmosphere significantly alters the results, and acts over timescales longer than 1200 days.</description><subject>hydrodynamics</subject><subject>methods: numerical</subject><subject>planets and satellites: atmospheres</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9zN1KwzAAhuEgCs7pFXiSC1hcfpvmUIY6x0RwEw9Lmh9bTZeStODw5p0oO_r44OUB4JrgG4IFmWOMOSpYQeYUE0YpkfwETAhnFGHJi1MwORbn4CLnj8OlpGQT8L1tHBx3rW-dhV20Lsyghn4MYY9M7Prkcm7r4GZwF3eo2dsU86CH1sygda6Heuhi7huXHHwPsdYBmjaZMRySuDuCfR9-_SHCJg5wNfbt4FK-BGdeh-yu_ncKXu_vtoslWj8_PC5u18jQQnFUC8mZxoZRLArlibTU6tIKQamjNS25cqUvpMClErX3xijtS6U0Z4pKaySbAvTntnlwX1Wf2k6nfaXTZ1VIJkVV4reKvSye8HKzqVbsB_B-ZCs</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Mayne, Nathan J.</creator><creator>Baraffe, Isabelle</creator><creator>Acreman, David M.</creator><creator>Smith, Chris</creator><creator>Browning, Matthew K.</creator><creator>Amundsen, David Skålid</creator><creator>Wood, Nigel</creator><creator>Thuburn, John</creator><creator>Jackson, David R.</creator><general>EDP Sciences</general><scope>BSCLL</scope></search><sort><creationdate>201401</creationdate><title>The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters</title><author>Mayne, Nathan J. ; Baraffe, Isabelle ; Acreman, David M. ; Smith, Chris ; Browning, Matthew K. ; Amundsen, David Skålid ; Wood, Nigel ; Thuburn, John ; Jackson, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2694-b5743a0c320569f17d2da8d5522e2b2849e8f6750895bffcc9af899a43927dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>hydrodynamics</topic><topic>methods: numerical</topic><topic>planets and satellites: atmospheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayne, Nathan J.</creatorcontrib><creatorcontrib>Baraffe, Isabelle</creatorcontrib><creatorcontrib>Acreman, David M.</creatorcontrib><creatorcontrib>Smith, Chris</creatorcontrib><creatorcontrib>Browning, Matthew K.</creatorcontrib><creatorcontrib>Amundsen, David Skålid</creatorcontrib><creatorcontrib>Wood, Nigel</creatorcontrib><creatorcontrib>Thuburn, John</creatorcontrib><creatorcontrib>Jackson, David R.</creatorcontrib><collection>Istex</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayne, Nathan J.</au><au>Baraffe, Isabelle</au><au>Acreman, David M.</au><au>Smith, Chris</au><au>Browning, Matthew K.</au><au>Amundsen, David Skålid</au><au>Wood, Nigel</au><au>Thuburn, John</au><au>Jackson, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2014-01</date><risdate>2014</risdate><volume>561</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>We are adapting the global circulation model (GCM) of the UK Met Office, the so-called unified model (UM), for the study of hot Jupiters. In this work we demonstrate the successful adaptation of the most sophisticated dynamical core, the component of the GCM which solves the equations of motion for the atmosphere, available within the UM, ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment). Within the same numerical scheme ENDGame supports solution to the dynamical equations under varying degrees of simplification. We present results from a simple, shallow (in atmospheric domain) hot Jupiter model (SHJ), and a more realistic (with a deeper atmosphere) HD 209458b test case. For both test cases we find that the large-scale, time-averaged (over the 1200 days prescribed test period), dynamical state of the atmosphere is relatively insensitive to the level of simplification of the dynamical equations. However, problems exist when attempting to reproduce the results for these test cases derived from other models. For the SHJ case the lower (and upper) boundary intersects the dominant dynamical features of the atmosphere meaning the results are heavily dependent on the boundary conditions. For the HD 209458b test case, when using the more complete dynamical models, the atmosphere is still clearly evolving after 1200 days, and in a transient state. Solving the complete (deep atmosphere and non-hydrostatic) dynamical equations allows exchange between the vertical and horizontal momentum of the atmosphere, via Coriolis and metric terms. Subsequently, interaction between the upper atmosphere and the deeper more slowly evolving (radiatively inactive) atmosphere significantly alters the results, and acts over timescales longer than 1200 days.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201322174</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2014-01, Vol.561
issn 0004-6361
1432-0746
language eng
recordid cdi_istex_primary_ark_67375_80W_3RCM0HSS_J
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects hydrodynamics
methods: numerical
planets and satellites: atmospheres
title The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20unified%20model,%20a%20fully-compressible,%20non-hydrostatic,%20deep%20atmosphere%20global%20circulation%20model,%20applied%20to%20hot%20Jupiters&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Mayne,%20Nathan%20J.&rft.date=2014-01&rft.volume=561&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201322174&rft_dat=%3Cistex%3Eark_67375_80W_3RCM0HSS_J%3C/istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true