An Lp Version of the Hardy Theorem for Motion Groups

We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight functions νω growing very rapidly and a measurable function f, the finiteness of the Lp-norm of vf and the Lq-norm of ωf implies f=0 (almost everywhere).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 2000-02, Vol.68 (1), p.55-67
Hauptverfasser: Eguchi, Masaaki, Koizumi, Shin, Kimahara, Keisaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 55
container_title Journal of the Australian Mathematical Society (2001)
container_volume 68
creator Eguchi, Masaaki
Koizumi, Shin
Kimahara, Keisaku
description We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight functions νω growing very rapidly and a measurable function f, the finiteness of the Lp-norm of vf and the Lq-norm of ωf implies f=0 (almost everywhere).
doi_str_mv 10.1017/S1446788700001579
format Article
fullrecord <record><control><sourceid>cambridge_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_6GQ_7KC7P5KL_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788700001579</cupid><sourcerecordid>10_1017_S1446788700001579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1919-d7138de7e93b6dc74771ad6fede7dfd6b14cecfe38416db2d24f053d71c38d623</originalsourceid><addsrcrecordid>eNplUMFOhDAUbIwm4uoHeOsPoH209MFxQ5TdLEaNq9cGaOuyCiWFTdy_F7LenMtL5s1MJkPILbA7YID3byCExCRBNgFiTM9IMFNhAgzPScAiyUMJEF-Sq2HYMyZEAhgQsexo0dMP44fGddRZOu4MXZVeH-l2Z5w3LbXO0yc3zv_cu0M_XJMLW34P5ubvLsj748M2W4XFc77OlkVYQwppqBF4og2alFdS1ygQodTSmonTVssKRG1qa3giQOoq0pGwLOaTrZ58MuILEp5ym2E0P6r3TVv6oyr9l5LIMVYyf1W4yfAl3hRKTnp-0tdlW_lGfxq1dwffTR0VMDUPpf4NxX8Bt9VZDQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Lp Version of the Hardy Theorem for Motion Groups</title><source>Cambridge University Press Journals Complete</source><creator>Eguchi, Masaaki ; Koizumi, Shin ; Kimahara, Keisaku</creator><creatorcontrib>Eguchi, Masaaki ; Koizumi, Shin ; Kimahara, Keisaku</creatorcontrib><description>We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight functions νω growing very rapidly and a measurable function f, the finiteness of the Lp-norm of vf and the Lq-norm of ωf implies f=0 (almost everywhere).</description><identifier>ISSN: 0263-6115</identifier><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788700001579</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Hardy theorem ; motion group ; primary 43A30 ; uncertainty principle</subject><ispartof>Journal of the Australian Mathematical Society (2001), 2000-02, Vol.68 (1), p.55-67</ispartof><rights>Copyright © Australian Mathematical Society 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Eguchi, Masaaki</creatorcontrib><creatorcontrib>Koizumi, Shin</creatorcontrib><creatorcontrib>Kimahara, Keisaku</creatorcontrib><title>An Lp Version of the Hardy Theorem for Motion Groups</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J Aust Math Soc A</addtitle><description>We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight functions νω growing very rapidly and a measurable function f, the finiteness of the Lp-norm of vf and the Lq-norm of ωf implies f=0 (almost everywhere).</description><subject>Hardy theorem</subject><subject>motion group</subject><subject>primary 43A30</subject><subject>uncertainty principle</subject><issn>0263-6115</issn><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNplUMFOhDAUbIwm4uoHeOsPoH209MFxQ5TdLEaNq9cGaOuyCiWFTdy_F7LenMtL5s1MJkPILbA7YID3byCExCRBNgFiTM9IMFNhAgzPScAiyUMJEF-Sq2HYMyZEAhgQsexo0dMP44fGddRZOu4MXZVeH-l2Z5w3LbXO0yc3zv_cu0M_XJMLW34P5ubvLsj748M2W4XFc77OlkVYQwppqBF4og2alFdS1ygQodTSmonTVssKRG1qa3giQOoq0pGwLOaTrZ58MuILEp5ym2E0P6r3TVv6oyr9l5LIMVYyf1W4yfAl3hRKTnp-0tdlW_lGfxq1dwffTR0VMDUPpf4NxX8Bt9VZDQ</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Eguchi, Masaaki</creator><creator>Koizumi, Shin</creator><creator>Kimahara, Keisaku</creator><general>Cambridge University Press</general><scope>BSCLL</scope></search><sort><creationdate>200002</creationdate><title>An Lp Version of the Hardy Theorem for Motion Groups</title><author>Eguchi, Masaaki ; Koizumi, Shin ; Kimahara, Keisaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1919-d7138de7e93b6dc74771ad6fede7dfd6b14cecfe38416db2d24f053d71c38d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Hardy theorem</topic><topic>motion group</topic><topic>primary 43A30</topic><topic>uncertainty principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eguchi, Masaaki</creatorcontrib><creatorcontrib>Koizumi, Shin</creatorcontrib><creatorcontrib>Kimahara, Keisaku</creatorcontrib><collection>Istex</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eguchi, Masaaki</au><au>Koizumi, Shin</au><au>Kimahara, Keisaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Lp Version of the Hardy Theorem for Motion Groups</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J Aust Math Soc A</addtitle><date>2000-02</date><risdate>2000</risdate><volume>68</volume><issue>1</issue><spage>55</spage><epage>67</epage><pages>55-67</pages><issn>0263-6115</issn><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight functions νω growing very rapidly and a measurable function f, the finiteness of the Lp-norm of vf and the Lq-norm of ωf implies f=0 (almost everywhere).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788700001579</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-6115
ispartof Journal of the Australian Mathematical Society (2001), 2000-02, Vol.68 (1), p.55-67
issn 0263-6115
1446-7887
1446-8107
language eng
recordid cdi_istex_primary_ark_67375_6GQ_7KC7P5KL_6
source Cambridge University Press Journals Complete
subjects Hardy theorem
motion group
primary 43A30
uncertainty principle
title An Lp Version of the Hardy Theorem for Motion Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Lp%20Version%20of%20the%20Hardy%20Theorem%20for%20Motion%20Groups&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=Eguchi,%20Masaaki&rft.date=2000-02&rft.volume=68&rft.issue=1&rft.spage=55&rft.epage=67&rft.pages=55-67&rft.issn=0263-6115&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788700001579&rft_dat=%3Ccambridge_istex%3E10_1017_S1446788700001579%3C/cambridge_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S1446788700001579&rfr_iscdi=true