On the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3
In this paper we investigate the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3. Those of co-dimension 1 have already been dealt with by several authors. In [2], V. I. Arnold considered the problem of evolution of galaxies. For a medium of non-interacting particles in ℝ3 with an initial ve...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 1996-04, Vol.119 (3), p.469-481 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 3 |
container_start_page | 469 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 119 |
creator | Marar, W. L. Tari, F. |
description | In this paper we investigate the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3. Those of co-dimension 1 have already been dealt with by several authors. In [2], V. I. Arnold considered the problem of evolution of galaxies. For a medium of non-interacting particles in ℝ3 with an initial velocity distribution v = v(x) (and a positive density distribution), the initial motion of particles defines a time-dependent map gt: ℝ3 → ℝ3 given by gt(x) = x + tv(x). At some time t singularities occur and the critical values of gi correspond to points of condensation of particles. Arnold assumed the vector field v is a gradient, that is v = ∇S, for some potential S. J. W. Bruce generalized these results in [4] by dropping the assumption on the velocity distribution and studied generic 1-parameter families of map germs F: ℝ3, 0 → ℝ3, 0. |
doi_str_mv | 10.1017/S030500410007434X |
format | Article |
fullrecord | <record><control><sourceid>cambridge_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_6GQ_3PPJK447_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S030500410007434X</cupid><sourcerecordid>10_1017_S030500410007434X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c821-44cda27bf11dda4aa4517d628d7a0acc3f5a5818847da718cd2b0c256f92b9763</originalsourceid><addsrcrecordid>eNplkE1OwzAUhC0EEqVwAHa-gOG92LGdJaqg_FRqEV2wsxw7KWnrprKDRPdcg8txEhrKjtXozXx6Gg0hlwhXCKiuX4BDDiAQAJTg4vWIDFDIgmmQ4pgM-pj1-Sk5S2m5p3iBMCCj6YZ2bxVdVG2ourijbU1TE7br3ooh9bdrWbSbFUUa7DbROraBfn9-cdq1v3pOTmq7TtXFnw7J_O52Prpnk-n4YXQzYU5nyIRw3maqrBG9t8JakaPyMtNeWbDO8Tq3uUathfJWoXY-K8FluayLrCyU5EPCDm-b1FUfZhubYOPO2LgyUnGVGzl-Nnw2e3wSQhnc8_zAOxvK2PhFZZbte9zsKxoE089m_s3GfwA3p154</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3</title><source>Cambridge Journals</source><creator>Marar, W. L. ; Tari, F.</creator><creatorcontrib>Marar, W. L. ; Tari, F.</creatorcontrib><description>In this paper we investigate the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3. Those of co-dimension 1 have already been dealt with by several authors. In [2], V. I. Arnold considered the problem of evolution of galaxies. For a medium of non-interacting particles in ℝ3 with an initial velocity distribution v = v(x) (and a positive density distribution), the initial motion of particles defines a time-dependent map gt: ℝ3 → ℝ3 given by gt(x) = x + tv(x). At some time t singularities occur and the critical values of gi correspond to points of condensation of particles. Arnold assumed the vector field v is a gradient, that is v = ∇S, for some potential S. J. W. Bruce generalized these results in [4] by dropping the assumption on the velocity distribution and studied generic 1-parameter families of map germs F: ℝ3, 0 → ℝ3, 0.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S030500410007434X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 1996-04, Vol.119 (3), p.469-481</ispartof><rights>Copyright © Cambridge Philosophical Society 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S030500410007434X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Marar, W. L.</creatorcontrib><creatorcontrib>Tari, F.</creatorcontrib><title>On the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>In this paper we investigate the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3. Those of co-dimension 1 have already been dealt with by several authors. In [2], V. I. Arnold considered the problem of evolution of galaxies. For a medium of non-interacting particles in ℝ3 with an initial velocity distribution v = v(x) (and a positive density distribution), the initial motion of particles defines a time-dependent map gt: ℝ3 → ℝ3 given by gt(x) = x + tv(x). At some time t singularities occur and the critical values of gi correspond to points of condensation of particles. Arnold assumed the vector field v is a gradient, that is v = ∇S, for some potential S. J. W. Bruce generalized these results in [4] by dropping the assumption on the velocity distribution and studied generic 1-parameter families of map germs F: ℝ3, 0 → ℝ3, 0.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNplkE1OwzAUhC0EEqVwAHa-gOG92LGdJaqg_FRqEV2wsxw7KWnrprKDRPdcg8txEhrKjtXozXx6Gg0hlwhXCKiuX4BDDiAQAJTg4vWIDFDIgmmQ4pgM-pj1-Sk5S2m5p3iBMCCj6YZ2bxVdVG2ourijbU1TE7br3ooh9bdrWbSbFUUa7DbROraBfn9-cdq1v3pOTmq7TtXFnw7J_O52Prpnk-n4YXQzYU5nyIRw3maqrBG9t8JakaPyMtNeWbDO8Tq3uUathfJWoXY-K8FluayLrCyU5EPCDm-b1FUfZhubYOPO2LgyUnGVGzl-Nnw2e3wSQhnc8_zAOxvK2PhFZZbte9zsKxoE089m_s3GfwA3p154</recordid><startdate>199604</startdate><enddate>199604</enddate><creator>Marar, W. L.</creator><creator>Tari, F.</creator><general>Cambridge University Press</general><scope>BSCLL</scope></search><sort><creationdate>199604</creationdate><title>On the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3</title><author>Marar, W. L. ; Tari, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c821-44cda27bf11dda4aa4517d628d7a0acc3f5a5818847da718cd2b0c256f92b9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marar, W. L.</creatorcontrib><creatorcontrib>Tari, F.</creatorcontrib><collection>Istex</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marar, W. L.</au><au>Tari, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>1996-04</date><risdate>1996</risdate><volume>119</volume><issue>3</issue><spage>469</spage><epage>481</epage><pages>469-481</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>In this paper we investigate the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3. Those of co-dimension 1 have already been dealt with by several authors. In [2], V. I. Arnold considered the problem of evolution of galaxies. For a medium of non-interacting particles in ℝ3 with an initial velocity distribution v = v(x) (and a positive density distribution), the initial motion of particles defines a time-dependent map gt: ℝ3 → ℝ3 given by gt(x) = x + tv(x). At some time t singularities occur and the critical values of gi correspond to points of condensation of particles. Arnold assumed the vector field v is a gradient, that is v = ∇S, for some potential S. J. W. Bruce generalized these results in [4] by dropping the assumption on the velocity distribution and studied generic 1-parameter families of map germs F: ℝ3, 0 → ℝ3, 0.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S030500410007434X</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 1996-04, Vol.119 (3), p.469-481 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_istex_primary_ark_67375_6GQ_3PPJK447_1 |
source | Cambridge Journals |
title | On the geometry of simple germs of co-rank 1 maps from ℝ3 to ℝ3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20geometry%20of%20simple%20germs%20of%20co-rank%201%20maps%20from%20%E2%84%9D3%20to%20%E2%84%9D3&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Marar,%20W.%20L.&rft.date=1996-04&rft.volume=119&rft.issue=3&rft.spage=469&rft.epage=481&rft.pages=469-481&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S030500410007434X&rft_dat=%3Ccambridge_istex%3E10_1017_S030500410007434X%3C/cambridge_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S030500410007434X&rfr_iscdi=true |