Limits from the Hubble Space Telescope on a Point Source in SN 1987A
We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. Our spectral observations cover ultraviolet (UV) and optical wavelengths...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2005-08, Vol.629 (2), p.944-959 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 2 |
container_start_page | 944 |
container_title | The Astrophysical journal |
container_volume | 629 |
creator | Graves, Genevieve J. M Challis, Peter M Chevalier, Roger A Crotts, Arlin Filippenko, Alexei V Fransson, Claes Garnavich, Peter Kirshner, Robert P Li, Weidong Lundqvist, Peter McCray, Richard Panagia, Nino Phillips, Mark M Pun, Chun J. S Schmidt, Brian P Sonneborn, George Suntzeff, Nicholas B Wang, Lifan Wheeler, J. Craig |
description | We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. Our spectral observations cover ultraviolet (UV) and optical wavelengths from 1140 to 10266 AA, and our imaging observations cover UV and optical wavelengths from 2900 to 9650 AA. No point source is observed in the remnant. We obtain a limiting flux of F sub(opt) , 1.6 x 10 super(-14) ergs s super(-1) cm super(-2) in the wavelength range 2900-9650 AA for any continuum emitter at the center of the supernova remnant (SNR). This corresponds to an intrinsic luminosity of L sub(opt) , 5 x 10 super(33) ergs s super(-1). It is likely that the SNR contains opaque dust that absorbs UV and optical emission, resulting in an attenuation of 635% due to dust absorption in the SNR. Correcting for this level of dust absorption would increase our upper limit on the luminosity of a continuum source by a factor of 1.54. Taking into account dust absorption in the remnant, we find a limit of L sub(opt) , 8 x 10 super(33) ergs s super(-1). We compare this upper bound with empirical evidence from point sources in other supernova remnants and with theoretical models for possible compact sources. We show that any survivor of a possible binary system must be no more luminous than an F6 main-sequence star. Bright young pulsars such as Kes 75 or the Crab pulsar are excluded by optical and X-ray limits on SN 1987A. Other nonplerionic X-ray point sources have luminosities similar to the limits on a point source in SN 1987A; RCW 103 and Cas A are slightly brighter than the limits on SN 1987A, while Pup A is slightly fainter. Of the young pulsars known to be associated with SNRs, those with ages ,5000 yr are all too bright in X-rays to be compatible with the limits on SN 1987A. Examining theoretical models for accretion onto a compact object, we find that spherical accretion onto a neutron star is firmly ruled out and that spherical accretion onto a black hole is possible only if there is a larger amount of dust absorption in the remnant than predicted. In the case of thin-disk accretion, our flux limit requires a small disk, no larger than 10 super(10) cm, with an accretion rate no more than 0.3 times the Eddington accretion rate. Possible ways to hide a surviving compact object include the removal of all surrounding material at early times by a photon-driven win |
doi_str_mv | 10.1086/431422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_primary_10_1086_431422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17364464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-bfe39f4bae6e9c8fd9780e533b018ba55125bb41edefdb8da69f302f4589b7e43</originalsourceid><addsrcrecordid>eNp90d9rFDEQB_AgFjyv-jfEBxUqq_mdzePRq7ZwqHCn-BaS3YlG9jbbZJfif-8td2hB6tMwzIcvwwxCzyl5S0mt3glOBWOP0IJKXleCS_0YLQgholJcf3uCnpbyc26ZMQu03sR9HAsOOe3x-APw9eR9B3g7uAbwDjooTRoApx47_DnFfsTbNOXDLPZ4-xFTU-vVOToLrivw7FSX6Mv7q93ldbX59OHmcrWpGkH5WPkA3AThHSgwTR1ao2sCknNPaO2dlJRJ7wWFFkLr69YpEzhhQcjaeA2CL9GbY265g2Hydshx7_Ivm1y06_h1ZVP-bstkOTGCH_Trox5yup2gjHYfSwNd53pIU7FacKalonPuq_9KqrkSQt2DTU6lZAh_VqDEzse3x-Mf4MtToiuN60J2fRPLX60pVZLRg3txdDEND2dd_GvmB9r5n1YxY5k1QtihDfw3Ba2YMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17364464</pqid></control><display><type>article</type><title>Limits from the Hubble Space Telescope on a Point Source in SN 1987A</title><source>Institute of Physics Open Access Journal Titles</source><creator>Graves, Genevieve J. M ; Challis, Peter M ; Chevalier, Roger A ; Crotts, Arlin ; Filippenko, Alexei V ; Fransson, Claes ; Garnavich, Peter ; Kirshner, Robert P ; Li, Weidong ; Lundqvist, Peter ; McCray, Richard ; Panagia, Nino ; Phillips, Mark M ; Pun, Chun J. S ; Schmidt, Brian P ; Sonneborn, George ; Suntzeff, Nicholas B ; Wang, Lifan ; Wheeler, J. Craig</creator><creatorcontrib>Graves, Genevieve J. M ; Challis, Peter M ; Chevalier, Roger A ; Crotts, Arlin ; Filippenko, Alexei V ; Fransson, Claes ; Garnavich, Peter ; Kirshner, Robert P ; Li, Weidong ; Lundqvist, Peter ; McCray, Richard ; Panagia, Nino ; Phillips, Mark M ; Pun, Chun J. S ; Schmidt, Brian P ; Sonneborn, George ; Suntzeff, Nicholas B ; Wang, Lifan ; Wheeler, J. Craig</creatorcontrib><description>We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. Our spectral observations cover ultraviolet (UV) and optical wavelengths from 1140 to 10266 AA, and our imaging observations cover UV and optical wavelengths from 2900 to 9650 AA. No point source is observed in the remnant. We obtain a limiting flux of F sub(opt) , 1.6 x 10 super(-14) ergs s super(-1) cm super(-2) in the wavelength range 2900-9650 AA for any continuum emitter at the center of the supernova remnant (SNR). This corresponds to an intrinsic luminosity of L sub(opt) , 5 x 10 super(33) ergs s super(-1). It is likely that the SNR contains opaque dust that absorbs UV and optical emission, resulting in an attenuation of 635% due to dust absorption in the SNR. Correcting for this level of dust absorption would increase our upper limit on the luminosity of a continuum source by a factor of 1.54. Taking into account dust absorption in the remnant, we find a limit of L sub(opt) , 8 x 10 super(33) ergs s super(-1). We compare this upper bound with empirical evidence from point sources in other supernova remnants and with theoretical models for possible compact sources. We show that any survivor of a possible binary system must be no more luminous than an F6 main-sequence star. Bright young pulsars such as Kes 75 or the Crab pulsar are excluded by optical and X-ray limits on SN 1987A. Other nonplerionic X-ray point sources have luminosities similar to the limits on a point source in SN 1987A; RCW 103 and Cas A are slightly brighter than the limits on SN 1987A, while Pup A is slightly fainter. Of the young pulsars known to be associated with SNRs, those with ages ,5000 yr are all too bright in X-rays to be compatible with the limits on SN 1987A. Examining theoretical models for accretion onto a compact object, we find that spherical accretion onto a neutron star is firmly ruled out and that spherical accretion onto a black hole is possible only if there is a larger amount of dust absorption in the remnant than predicted. In the case of thin-disk accretion, our flux limit requires a small disk, no larger than 10 super(10) cm, with an accretion rate no more than 0.3 times the Eddington accretion rate. Possible ways to hide a surviving compact object include the removal of all surrounding material at early times by a photon-driven wind, a small accretion disk, or very high levels of dust absorption in the remnant. It will not be easy to improve substantially on our optical-UV limit for a point source in SN 1987A, although we can hope that a better understanding of the thermal infrared emission will provide a more complete picture of the possible energy sources at the center of SN 1987A.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/431422</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Accretion ; Accretion Disks ; astronomi ; Astronomy ; Stars: Neutron ; Stars: Supernovae: Individual: Alphanumeric: SN 1987A</subject><ispartof>The Astrophysical journal, 2005-08, Vol.629 (2), p.944-959</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-bfe39f4bae6e9c8fd9780e533b018ba55125bb41edefdb8da69f302f4589b7e43</citedby><cites>FETCH-LOGICAL-c413t-bfe39f4bae6e9c8fd9780e533b018ba55125bb41edefdb8da69f302f4589b7e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/431422/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27628,27924,27925,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/629/2/944$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17116521$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-30943$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Graves, Genevieve J. M</creatorcontrib><creatorcontrib>Challis, Peter M</creatorcontrib><creatorcontrib>Chevalier, Roger A</creatorcontrib><creatorcontrib>Crotts, Arlin</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><creatorcontrib>Fransson, Claes</creatorcontrib><creatorcontrib>Garnavich, Peter</creatorcontrib><creatorcontrib>Kirshner, Robert P</creatorcontrib><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Lundqvist, Peter</creatorcontrib><creatorcontrib>McCray, Richard</creatorcontrib><creatorcontrib>Panagia, Nino</creatorcontrib><creatorcontrib>Phillips, Mark M</creatorcontrib><creatorcontrib>Pun, Chun J. S</creatorcontrib><creatorcontrib>Schmidt, Brian P</creatorcontrib><creatorcontrib>Sonneborn, George</creatorcontrib><creatorcontrib>Suntzeff, Nicholas B</creatorcontrib><creatorcontrib>Wang, Lifan</creatorcontrib><creatorcontrib>Wheeler, J. Craig</creatorcontrib><title>Limits from the Hubble Space Telescope on a Point Source in SN 1987A</title><title>The Astrophysical journal</title><description>We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. Our spectral observations cover ultraviolet (UV) and optical wavelengths from 1140 to 10266 AA, and our imaging observations cover UV and optical wavelengths from 2900 to 9650 AA. No point source is observed in the remnant. We obtain a limiting flux of F sub(opt) , 1.6 x 10 super(-14) ergs s super(-1) cm super(-2) in the wavelength range 2900-9650 AA for any continuum emitter at the center of the supernova remnant (SNR). This corresponds to an intrinsic luminosity of L sub(opt) , 5 x 10 super(33) ergs s super(-1). It is likely that the SNR contains opaque dust that absorbs UV and optical emission, resulting in an attenuation of 635% due to dust absorption in the SNR. Correcting for this level of dust absorption would increase our upper limit on the luminosity of a continuum source by a factor of 1.54. Taking into account dust absorption in the remnant, we find a limit of L sub(opt) , 8 x 10 super(33) ergs s super(-1). We compare this upper bound with empirical evidence from point sources in other supernova remnants and with theoretical models for possible compact sources. We show that any survivor of a possible binary system must be no more luminous than an F6 main-sequence star. Bright young pulsars such as Kes 75 or the Crab pulsar are excluded by optical and X-ray limits on SN 1987A. Other nonplerionic X-ray point sources have luminosities similar to the limits on a point source in SN 1987A; RCW 103 and Cas A are slightly brighter than the limits on SN 1987A, while Pup A is slightly fainter. Of the young pulsars known to be associated with SNRs, those with ages ,5000 yr are all too bright in X-rays to be compatible with the limits on SN 1987A. Examining theoretical models for accretion onto a compact object, we find that spherical accretion onto a neutron star is firmly ruled out and that spherical accretion onto a black hole is possible only if there is a larger amount of dust absorption in the remnant than predicted. In the case of thin-disk accretion, our flux limit requires a small disk, no larger than 10 super(10) cm, with an accretion rate no more than 0.3 times the Eddington accretion rate. Possible ways to hide a surviving compact object include the removal of all surrounding material at early times by a photon-driven wind, a small accretion disk, or very high levels of dust absorption in the remnant. It will not be easy to improve substantially on our optical-UV limit for a point source in SN 1987A, although we can hope that a better understanding of the thermal infrared emission will provide a more complete picture of the possible energy sources at the center of SN 1987A.</description><subject>Accretion</subject><subject>Accretion Disks</subject><subject>astronomi</subject><subject>Astronomy</subject><subject>Stars: Neutron</subject><subject>Stars: Supernovae: Individual: Alphanumeric: SN 1987A</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90d9rFDEQB_AgFjyv-jfEBxUqq_mdzePRq7ZwqHCn-BaS3YlG9jbbZJfif-8td2hB6tMwzIcvwwxCzyl5S0mt3glOBWOP0IJKXleCS_0YLQgholJcf3uCnpbyc26ZMQu03sR9HAsOOe3x-APw9eR9B3g7uAbwDjooTRoApx47_DnFfsTbNOXDLPZ4-xFTU-vVOToLrivw7FSX6Mv7q93ldbX59OHmcrWpGkH5WPkA3AThHSgwTR1ao2sCknNPaO2dlJRJ7wWFFkLr69YpEzhhQcjaeA2CL9GbY265g2Hydshx7_Ivm1y06_h1ZVP-bstkOTGCH_Trox5yup2gjHYfSwNd53pIU7FacKalonPuq_9KqrkSQt2DTU6lZAh_VqDEzse3x-Mf4MtToiuN60J2fRPLX60pVZLRg3txdDEND2dd_GvmB9r5n1YxY5k1QtihDfw3Ba2YMw</recordid><startdate>20050820</startdate><enddate>20050820</enddate><creator>Graves, Genevieve J. M</creator><creator>Challis, Peter M</creator><creator>Chevalier, Roger A</creator><creator>Crotts, Arlin</creator><creator>Filippenko, Alexei V</creator><creator>Fransson, Claes</creator><creator>Garnavich, Peter</creator><creator>Kirshner, Robert P</creator><creator>Li, Weidong</creator><creator>Lundqvist, Peter</creator><creator>McCray, Richard</creator><creator>Panagia, Nino</creator><creator>Phillips, Mark M</creator><creator>Pun, Chun J. S</creator><creator>Schmidt, Brian P</creator><creator>Sonneborn, George</creator><creator>Suntzeff, Nicholas B</creator><creator>Wang, Lifan</creator><creator>Wheeler, J. Craig</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20050820</creationdate><title>Limits from the Hubble Space Telescope on a Point Source in SN 1987A</title><author>Graves, Genevieve J. M ; Challis, Peter M ; Chevalier, Roger A ; Crotts, Arlin ; Filippenko, Alexei V ; Fransson, Claes ; Garnavich, Peter ; Kirshner, Robert P ; Li, Weidong ; Lundqvist, Peter ; McCray, Richard ; Panagia, Nino ; Phillips, Mark M ; Pun, Chun J. S ; Schmidt, Brian P ; Sonneborn, George ; Suntzeff, Nicholas B ; Wang, Lifan ; Wheeler, J. Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-bfe39f4bae6e9c8fd9780e533b018ba55125bb41edefdb8da69f302f4589b7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Accretion</topic><topic>Accretion Disks</topic><topic>astronomi</topic><topic>Astronomy</topic><topic>Stars: Neutron</topic><topic>Stars: Supernovae: Individual: Alphanumeric: SN 1987A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graves, Genevieve J. M</creatorcontrib><creatorcontrib>Challis, Peter M</creatorcontrib><creatorcontrib>Chevalier, Roger A</creatorcontrib><creatorcontrib>Crotts, Arlin</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><creatorcontrib>Fransson, Claes</creatorcontrib><creatorcontrib>Garnavich, Peter</creatorcontrib><creatorcontrib>Kirshner, Robert P</creatorcontrib><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Lundqvist, Peter</creatorcontrib><creatorcontrib>McCray, Richard</creatorcontrib><creatorcontrib>Panagia, Nino</creatorcontrib><creatorcontrib>Phillips, Mark M</creatorcontrib><creatorcontrib>Pun, Chun J. S</creatorcontrib><creatorcontrib>Schmidt, Brian P</creatorcontrib><creatorcontrib>Sonneborn, George</creatorcontrib><creatorcontrib>Suntzeff, Nicholas B</creatorcontrib><creatorcontrib>Wang, Lifan</creatorcontrib><creatorcontrib>Wheeler, J. Craig</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Graves, Genevieve J. M</au><au>Challis, Peter M</au><au>Chevalier, Roger A</au><au>Crotts, Arlin</au><au>Filippenko, Alexei V</au><au>Fransson, Claes</au><au>Garnavich, Peter</au><au>Kirshner, Robert P</au><au>Li, Weidong</au><au>Lundqvist, Peter</au><au>McCray, Richard</au><au>Panagia, Nino</au><au>Phillips, Mark M</au><au>Pun, Chun J. S</au><au>Schmidt, Brian P</au><au>Sonneborn, George</au><au>Suntzeff, Nicholas B</au><au>Wang, Lifan</au><au>Wheeler, J. Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limits from the Hubble Space Telescope on a Point Source in SN 1987A</atitle><jtitle>The Astrophysical journal</jtitle><date>2005-08-20</date><risdate>2005</risdate><volume>629</volume><issue>2</issue><spage>944</spage><epage>959</epage><pages>944-959</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. Our spectral observations cover ultraviolet (UV) and optical wavelengths from 1140 to 10266 AA, and our imaging observations cover UV and optical wavelengths from 2900 to 9650 AA. No point source is observed in the remnant. We obtain a limiting flux of F sub(opt) , 1.6 x 10 super(-14) ergs s super(-1) cm super(-2) in the wavelength range 2900-9650 AA for any continuum emitter at the center of the supernova remnant (SNR). This corresponds to an intrinsic luminosity of L sub(opt) , 5 x 10 super(33) ergs s super(-1). It is likely that the SNR contains opaque dust that absorbs UV and optical emission, resulting in an attenuation of 635% due to dust absorption in the SNR. Correcting for this level of dust absorption would increase our upper limit on the luminosity of a continuum source by a factor of 1.54. Taking into account dust absorption in the remnant, we find a limit of L sub(opt) , 8 x 10 super(33) ergs s super(-1). We compare this upper bound with empirical evidence from point sources in other supernova remnants and with theoretical models for possible compact sources. We show that any survivor of a possible binary system must be no more luminous than an F6 main-sequence star. Bright young pulsars such as Kes 75 or the Crab pulsar are excluded by optical and X-ray limits on SN 1987A. Other nonplerionic X-ray point sources have luminosities similar to the limits on a point source in SN 1987A; RCW 103 and Cas A are slightly brighter than the limits on SN 1987A, while Pup A is slightly fainter. Of the young pulsars known to be associated with SNRs, those with ages ,5000 yr are all too bright in X-rays to be compatible with the limits on SN 1987A. Examining theoretical models for accretion onto a compact object, we find that spherical accretion onto a neutron star is firmly ruled out and that spherical accretion onto a black hole is possible only if there is a larger amount of dust absorption in the remnant than predicted. In the case of thin-disk accretion, our flux limit requires a small disk, no larger than 10 super(10) cm, with an accretion rate no more than 0.3 times the Eddington accretion rate. Possible ways to hide a surviving compact object include the removal of all surrounding material at early times by a photon-driven wind, a small accretion disk, or very high levels of dust absorption in the remnant. It will not be easy to improve substantially on our optical-UV limit for a point source in SN 1987A, although we can hope that a better understanding of the thermal infrared emission will provide a more complete picture of the possible energy sources at the center of SN 1987A.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/431422</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2005-08, Vol.629 (2), p.944-959 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_iop_primary_10_1086_431422 |
source | Institute of Physics Open Access Journal Titles |
subjects | Accretion Accretion Disks astronomi Astronomy Stars: Neutron Stars: Supernovae: Individual: Alphanumeric: SN 1987A |
title | Limits from the Hubble Space Telescope on a Point Source in SN 1987A |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limits%20from%20the%20Hubble%20Space%20Telescope%20on%20a%20Point%20Source%20in%20SN%201987A&rft.jtitle=The%20Astrophysical%20journal&rft.au=Graves,%20Genevieve%20J.%20M&rft.date=2005-08-20&rft.volume=629&rft.issue=2&rft.spage=944&rft.epage=959&rft.pages=944-959&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/431422&rft_dat=%3Cproquest_O3W%3E17364464%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17364464&rft_id=info:pmid/&rfr_iscdi=true |