Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows
OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a...
Gespeichert in:
Veröffentlicht in: | The Astrophysical Journal 2003-08, Vol.592 (2), p.1042-1059 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1059 |
---|---|
container_issue | 2 |
container_start_page | 1042 |
container_title | The Astrophysical Journal |
container_volume | 592 |
creator | Igumenshchev, Igor V Narayan, Ramesh Abramowicz, Marek A |
description | OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events. |
doi_str_mv | 10.1086/375769 |
format | Article |
fullrecord | <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_primary_10_1086_375769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1086_375769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</originalsourceid><addsrcrecordid>eNpd0NFKwzAUBuAgCs6pz1BvvJFq0qRJczmG08FE0AleCCE9TVykTUZTlb69LRMVrw4_fOcc-BE6JfiS4IJfUZELLvfQhOS0SBnNxT6aYIxZyql4PkRHMb6NMZNygl7Wm9aYtHKN8dEFr-vkTr9604VNX7Wh6r1uHCSPrnmvdTeAmASbPOjKDenD1H2y9MZaB874LpkBtGZUyaIOn_EYHVhdR3PyPafoaXG9nt-mq_ub5Xy2SoEy0qWUVByAcw0MOCmygudGlBURzJCScEkLK4EZEAxozqyQpZa6zKyFHBOpgU7R2e5uiJ1TEVxnYAPBewOdKkgmMR3M-c5AG2JsjVXb1jW67RXBauxN7Xob4MUOurD9MWNfaqxP5TJT2bDAMrWt7O_rv_rfxS_AxHjP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</title><source>IOP Publishing Free Content</source><creator>Igumenshchev, Igor V ; Narayan, Ramesh ; Abramowicz, Marek A</creator><creatorcontrib>Igumenshchev, Igor V ; Narayan, Ramesh ; Abramowicz, Marek A ; Laboratory for Laser Energetics (US)</creatorcontrib><description>OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/375769</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ACCRETION ; ACCRETION DISKS ; BLACK HOLE PHYSICS ; BLACK HOLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONVECTION ; GEOMETRY ; HYDRODYNAMICS ; MAGNETIC FIELDS ; MAGNETIC RECONNECTION ; MAGNETOHYDRODYNAMICS ; MHD ; TRANSIENTS ; TURBULENCE</subject><ispartof>The Astrophysical Journal, 2003-08, Vol.592 (2), p.1042-1059</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</citedby><cites>FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/375769/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,885,27626,27922,27923,53929</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/592/2/1042$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/812903$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Igumenshchev, Igor V</creatorcontrib><creatorcontrib>Narayan, Ramesh</creatorcontrib><creatorcontrib>Abramowicz, Marek A</creatorcontrib><creatorcontrib>Laboratory for Laser Energetics (US)</creatorcontrib><title>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</title><title>The Astrophysical Journal</title><description>OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events.</description><subject>ACCRETION</subject><subject>ACCRETION DISKS</subject><subject>BLACK HOLE PHYSICS</subject><subject>BLACK HOLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONVECTION</subject><subject>GEOMETRY</subject><subject>HYDRODYNAMICS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC RECONNECTION</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MHD</subject><subject>TRANSIENTS</subject><subject>TURBULENCE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpd0NFKwzAUBuAgCs6pz1BvvJFq0qRJczmG08FE0AleCCE9TVykTUZTlb69LRMVrw4_fOcc-BE6JfiS4IJfUZELLvfQhOS0SBnNxT6aYIxZyql4PkRHMb6NMZNygl7Wm9aYtHKN8dEFr-vkTr9604VNX7Wh6r1uHCSPrnmvdTeAmASbPOjKDenD1H2y9MZaB874LpkBtGZUyaIOn_EYHVhdR3PyPafoaXG9nt-mq_ub5Xy2SoEy0qWUVByAcw0MOCmygudGlBURzJCScEkLK4EZEAxozqyQpZa6zKyFHBOpgU7R2e5uiJ1TEVxnYAPBewOdKkgmMR3M-c5AG2JsjVXb1jW67RXBauxN7Xob4MUOurD9MWNfaqxP5TJT2bDAMrWt7O_rv_rfxS_AxHjP</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Igumenshchev, Igor V</creator><creator>Narayan, Ramesh</creator><creator>Abramowicz, Marek A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20030801</creationdate><title>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</title><author>Igumenshchev, Igor V ; Narayan, Ramesh ; Abramowicz, Marek A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>ACCRETION</topic><topic>ACCRETION DISKS</topic><topic>BLACK HOLE PHYSICS</topic><topic>BLACK HOLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONVECTION</topic><topic>GEOMETRY</topic><topic>HYDRODYNAMICS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC RECONNECTION</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MHD</topic><topic>TRANSIENTS</topic><topic>TURBULENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igumenshchev, Igor V</creatorcontrib><creatorcontrib>Narayan, Ramesh</creatorcontrib><creatorcontrib>Abramowicz, Marek A</creatorcontrib><creatorcontrib>Laboratory for Laser Energetics (US)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Igumenshchev, Igor V</au><au>Narayan, Ramesh</au><au>Abramowicz, Marek A</au><aucorp>Laboratory for Laser Energetics (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</atitle><jtitle>The Astrophysical Journal</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>592</volume><issue>2</issue><spage>1042</spage><epage>1059</epage><pages>1042-1059</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1086/375769</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical Journal, 2003-08, Vol.592 (2), p.1042-1059 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_primary_10_1086_375769 |
source | IOP Publishing Free Content |
subjects | ACCRETION ACCRETION DISKS BLACK HOLE PHYSICS BLACK HOLES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CONVECTION GEOMETRY HYDRODYNAMICS MAGNETIC FIELDS MAGNETIC RECONNECTION MAGNETOHYDRODYNAMICS MHD TRANSIENTS TURBULENCE |
title | Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20Magnetohydrodynamic%20Simulations%20of%20Radiatively%20Inefficient%20Accretion%20Flows&rft.jtitle=The%20Astrophysical%20Journal&rft.au=Igumenshchev,%20Igor%20V&rft.aucorp=Laboratory%20for%20Laser%20Energetics%20(US)&rft.date=2003-08-01&rft.volume=592&rft.issue=2&rft.spage=1042&rft.epage=1059&rft.pages=1042-1059&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1086/375769&rft_dat=%3Ciop_O3W%3E10_1086_375769%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |