Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows

OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical Journal 2003-08, Vol.592 (2), p.1042-1059
Hauptverfasser: Igumenshchev, Igor V, Narayan, Ramesh, Abramowicz, Marek A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1059
container_issue 2
container_start_page 1042
container_title The Astrophysical Journal
container_volume 592
creator Igumenshchev, Igor V
Narayan, Ramesh
Abramowicz, Marek A
description OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events.
doi_str_mv 10.1086/375769
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_iop_primary_10_1086_375769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1086_375769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</originalsourceid><addsrcrecordid>eNpd0NFKwzAUBuAgCs6pz1BvvJFq0qRJczmG08FE0AleCCE9TVykTUZTlb69LRMVrw4_fOcc-BE6JfiS4IJfUZELLvfQhOS0SBnNxT6aYIxZyql4PkRHMb6NMZNygl7Wm9aYtHKN8dEFr-vkTr9604VNX7Wh6r1uHCSPrnmvdTeAmASbPOjKDenD1H2y9MZaB874LpkBtGZUyaIOn_EYHVhdR3PyPafoaXG9nt-mq_ub5Xy2SoEy0qWUVByAcw0MOCmygudGlBURzJCScEkLK4EZEAxozqyQpZa6zKyFHBOpgU7R2e5uiJ1TEVxnYAPBewOdKkgmMR3M-c5AG2JsjVXb1jW67RXBauxN7Xob4MUOurD9MWNfaqxP5TJT2bDAMrWt7O_rv_rfxS_AxHjP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</title><source>IOP Publishing Free Content</source><creator>Igumenshchev, Igor V ; Narayan, Ramesh ; Abramowicz, Marek A</creator><creatorcontrib>Igumenshchev, Igor V ; Narayan, Ramesh ; Abramowicz, Marek A ; Laboratory for Laser Energetics (US)</creatorcontrib><description>OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/375769</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ACCRETION ; ACCRETION DISKS ; BLACK HOLE PHYSICS ; BLACK HOLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONVECTION ; GEOMETRY ; HYDRODYNAMICS ; MAGNETIC FIELDS ; MAGNETIC RECONNECTION ; MAGNETOHYDRODYNAMICS ; MHD ; TRANSIENTS ; TURBULENCE</subject><ispartof>The Astrophysical Journal, 2003-08, Vol.592 (2), p.1042-1059</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</citedby><cites>FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/375769/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,885,27626,27922,27923,53929</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/592/2/1042$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/812903$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Igumenshchev, Igor V</creatorcontrib><creatorcontrib>Narayan, Ramesh</creatorcontrib><creatorcontrib>Abramowicz, Marek A</creatorcontrib><creatorcontrib>Laboratory for Laser Energetics (US)</creatorcontrib><title>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</title><title>The Astrophysical Journal</title><description>OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events.</description><subject>ACCRETION</subject><subject>ACCRETION DISKS</subject><subject>BLACK HOLE PHYSICS</subject><subject>BLACK HOLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONVECTION</subject><subject>GEOMETRY</subject><subject>HYDRODYNAMICS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC RECONNECTION</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MHD</subject><subject>TRANSIENTS</subject><subject>TURBULENCE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpd0NFKwzAUBuAgCs6pz1BvvJFq0qRJczmG08FE0AleCCE9TVykTUZTlb69LRMVrw4_fOcc-BE6JfiS4IJfUZELLvfQhOS0SBnNxT6aYIxZyql4PkRHMb6NMZNygl7Wm9aYtHKN8dEFr-vkTr9604VNX7Wh6r1uHCSPrnmvdTeAmASbPOjKDenD1H2y9MZaB874LpkBtGZUyaIOn_EYHVhdR3PyPafoaXG9nt-mq_ub5Xy2SoEy0qWUVByAcw0MOCmygudGlBURzJCScEkLK4EZEAxozqyQpZa6zKyFHBOpgU7R2e5uiJ1TEVxnYAPBewOdKkgmMR3M-c5AG2JsjVXb1jW67RXBauxN7Xob4MUOurD9MWNfaqxP5TJT2bDAMrWt7O_rv_rfxS_AxHjP</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Igumenshchev, Igor V</creator><creator>Narayan, Ramesh</creator><creator>Abramowicz, Marek A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20030801</creationdate><title>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</title><author>Igumenshchev, Igor V ; Narayan, Ramesh ; Abramowicz, Marek A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-31d6cc66ac4c6182865e7bd174e1b16938f9c4ec74c354f79ba9ab2ffc5019ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>ACCRETION</topic><topic>ACCRETION DISKS</topic><topic>BLACK HOLE PHYSICS</topic><topic>BLACK HOLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONVECTION</topic><topic>GEOMETRY</topic><topic>HYDRODYNAMICS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC RECONNECTION</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MHD</topic><topic>TRANSIENTS</topic><topic>TURBULENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igumenshchev, Igor V</creatorcontrib><creatorcontrib>Narayan, Ramesh</creatorcontrib><creatorcontrib>Abramowicz, Marek A</creatorcontrib><creatorcontrib>Laboratory for Laser Energetics (US)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Igumenshchev, Igor V</au><au>Narayan, Ramesh</au><au>Abramowicz, Marek A</au><aucorp>Laboratory for Laser Energetics (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows</atitle><jtitle>The Astrophysical Journal</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>592</volume><issue>2</issue><spage>1042</spage><epage>1059</epage><pages>1042-1059</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>OAK B204 We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. We continuously inject magnetized matter into the computational domain near the outer boundary and run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal injection, the accreting matter forms a nearly axisymmetric, geometrically thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady st ate, it changes in character completely. The magnetized accreting gas becomes two-phase, with most of the volume being dominated by a strong dipolar magnetic field from which a thermal low-density wind flows out. Accretion occurs mainly via narrow slowly rotating radial streams that ''diffuse'' through the magnetic field with the help of magnetic reconnection events.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1086/375769</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical Journal, 2003-08, Vol.592 (2), p.1042-1059
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_primary_10_1086_375769
source IOP Publishing Free Content
subjects ACCRETION
ACCRETION DISKS
BLACK HOLE PHYSICS
BLACK HOLES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CONVECTION
GEOMETRY
HYDRODYNAMICS
MAGNETIC FIELDS
MAGNETIC RECONNECTION
MAGNETOHYDRODYNAMICS
MHD
TRANSIENTS
TURBULENCE
title Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20Magnetohydrodynamic%20Simulations%20of%20Radiatively%20Inefficient%20Accretion%20Flows&rft.jtitle=The%20Astrophysical%20Journal&rft.au=Igumenshchev,%20Igor%20V&rft.aucorp=Laboratory%20for%20Laser%20Energetics%20(US)&rft.date=2003-08-01&rft.volume=592&rft.issue=2&rft.spage=1042&rft.epage=1059&rft.pages=1042-1059&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1086/375769&rft_dat=%3Ciop_O3W%3E10_1086_375769%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true