Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design

DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2017-06, Vol.56 (6S1), p.6
Hauptverfasser: Ma, Zhipeng, Kawai, Kentaro, Hirai, Yoshikazu, Tsuchiya, Toshiyuki, Tabata, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6S1
container_start_page 6
container_title Japanese Journal of Applied Physics
container_volume 56
creator Ma, Zhipeng
Kawai, Kentaro
Hirai, Yoshikazu
Tsuchiya, Toshiyuki
Tabata, Osamu
description DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.
doi_str_mv 10.7567/JJAP.56.06GJ02
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_7567_JJAP_56_06GJ02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2045353217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</originalsourceid><addsrcrecordid>eNqVkM9LwzAUx4MoOKdXzwFvQmuS5kd7HFOnY6jgvBrSJp0pW1KTdrD_3s4NPHt67_E-7_u-fAG4xigVjIu7-XzyljKeIj6bI3ICRjijIqGIs1MwQojghBaEnIOLGJth5IziEfhc9s66FWx98NF2O6ichkFpq9ZwY6ov5Ww1tG3wrQmdNRH6Gt6_TKAPdqU2FjrlfNeXw2JrFawGlei3JkBtol25S3BWq3U0V8c6Bh-PD8vpU7J4nT1PJ4ukoijrkpKRgqjKmKo0ZcF4blRVMIyEZpTiQnGWU1UKpg02mcBEY4oKxbTKBaeG5tkY3Bx0B6PfvYmdbHwf3PBSEkRZxjKCxUClB-rXZjC1bIPdqLCTGMl9hnKfoWRcHjIcDm4PB9a3f4r_gptGtXuIv-MjKFtdZz-qz4C1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045353217</pqid></control><display><type>article</type><title>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ma, Zhipeng ; Kawai, Kentaro ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creator><creatorcontrib>Ma, Zhipeng ; Kawai, Kentaro ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creatorcontrib><description>DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.56.06GJ02</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Applied Physics</publisher><subject>Atomic force microscopy ; Automation ; Crossovers ; Deoxyribonucleic acid ; DNA ; Drug delivery systems ; Helices ; Manufacturing engineering ; Mechanical properties ; Nanotubes ; Porosity</subject><ispartof>Japanese Journal of Applied Physics, 2017-06, Vol.56 (6S1), p.6</ispartof><rights>2017 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</citedby><cites>FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/JJAP.56.06GJ02/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27928,27929,53850,53897</link.rule.ids></links><search><creatorcontrib>Ma, Zhipeng</creatorcontrib><creatorcontrib>Kawai, Kentaro</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><title>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.</description><subject>Atomic force microscopy</subject><subject>Automation</subject><subject>Crossovers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug delivery systems</subject><subject>Helices</subject><subject>Manufacturing engineering</subject><subject>Mechanical properties</subject><subject>Nanotubes</subject><subject>Porosity</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVkM9LwzAUx4MoOKdXzwFvQmuS5kd7HFOnY6jgvBrSJp0pW1KTdrD_3s4NPHt67_E-7_u-fAG4xigVjIu7-XzyljKeIj6bI3ICRjijIqGIs1MwQojghBaEnIOLGJth5IziEfhc9s66FWx98NF2O6ichkFpq9ZwY6ov5Ww1tG3wrQmdNRH6Gt6_TKAPdqU2FjrlfNeXw2JrFawGlei3JkBtol25S3BWq3U0V8c6Bh-PD8vpU7J4nT1PJ4ukoijrkpKRgqjKmKo0ZcF4blRVMIyEZpTiQnGWU1UKpg02mcBEY4oKxbTKBaeG5tkY3Bx0B6PfvYmdbHwf3PBSEkRZxjKCxUClB-rXZjC1bIPdqLCTGMl9hnKfoWRcHjIcDm4PB9a3f4r_gptGtXuIv-MjKFtdZz-qz4C1</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Ma, Zhipeng</creator><creator>Kawai, Kentaro</creator><creator>Hirai, Yoshikazu</creator><creator>Tsuchiya, Toshiyuki</creator><creator>Tabata, Osamu</creator><general>The Japan Society of Applied Physics</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</title><author>Ma, Zhipeng ; Kawai, Kentaro ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopy</topic><topic>Automation</topic><topic>Crossovers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug delivery systems</topic><topic>Helices</topic><topic>Manufacturing engineering</topic><topic>Mechanical properties</topic><topic>Nanotubes</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhipeng</creatorcontrib><creatorcontrib>Kawai, Kentaro</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhipeng</au><au>Kawai, Kentaro</au><au>Hirai, Yoshikazu</au><au>Tsuchiya, Toshiyuki</au><au>Tabata, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>56</volume><issue>6S1</issue><spage>6</spage><pages>6-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.</abstract><cop>Tokyo</cop><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.56.06GJ02</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2017-06, Vol.56 (6S1), p.6
issn 0021-4922
1347-4065
language eng
recordid cdi_iop_journals_10_7567_JJAP_56_06GJ02
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Atomic force microscopy
Automation
Crossovers
Deoxyribonucleic acid
DNA
Drug delivery systems
Helices
Manufacturing engineering
Mechanical properties
Nanotubes
Porosity
title Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20porosity%20and%20radial%20mechanical%20properties%20of%20DNA%20origami%20nanotubes%20via%20crossover%20design&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Ma,%20Zhipeng&rft.date=2017-06-01&rft.volume=56&rft.issue=6S1&rft.spage=6&rft.pages=6-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/JJAP.56.06GJ02&rft_dat=%3Cproquest_iop_j%3E2045353217%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2045353217&rft_id=info:pmid/&rfr_iscdi=true