Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design
DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosyst...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2017-06, Vol.56 (6S1), p.6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6S1 |
container_start_page | 6 |
container_title | Japanese Journal of Applied Physics |
container_volume | 56 |
creator | Ma, Zhipeng Kawai, Kentaro Hirai, Yoshikazu Tsuchiya, Toshiyuki Tabata, Osamu |
description | DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications. |
doi_str_mv | 10.7567/JJAP.56.06GJ02 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_7567_JJAP_56_06GJ02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2045353217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</originalsourceid><addsrcrecordid>eNqVkM9LwzAUx4MoOKdXzwFvQmuS5kd7HFOnY6jgvBrSJp0pW1KTdrD_3s4NPHt67_E-7_u-fAG4xigVjIu7-XzyljKeIj6bI3ICRjijIqGIs1MwQojghBaEnIOLGJth5IziEfhc9s66FWx98NF2O6ichkFpq9ZwY6ov5Ww1tG3wrQmdNRH6Gt6_TKAPdqU2FjrlfNeXw2JrFawGlei3JkBtol25S3BWq3U0V8c6Bh-PD8vpU7J4nT1PJ4ukoijrkpKRgqjKmKo0ZcF4blRVMIyEZpTiQnGWU1UKpg02mcBEY4oKxbTKBaeG5tkY3Bx0B6PfvYmdbHwf3PBSEkRZxjKCxUClB-rXZjC1bIPdqLCTGMl9hnKfoWRcHjIcDm4PB9a3f4r_gptGtXuIv-MjKFtdZz-qz4C1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045353217</pqid></control><display><type>article</type><title>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ma, Zhipeng ; Kawai, Kentaro ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creator><creatorcontrib>Ma, Zhipeng ; Kawai, Kentaro ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creatorcontrib><description>DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.56.06GJ02</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Applied Physics</publisher><subject>Atomic force microscopy ; Automation ; Crossovers ; Deoxyribonucleic acid ; DNA ; Drug delivery systems ; Helices ; Manufacturing engineering ; Mechanical properties ; Nanotubes ; Porosity</subject><ispartof>Japanese Journal of Applied Physics, 2017-06, Vol.56 (6S1), p.6</ispartof><rights>2017 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</citedby><cites>FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/JJAP.56.06GJ02/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27928,27929,53850,53897</link.rule.ids></links><search><creatorcontrib>Ma, Zhipeng</creatorcontrib><creatorcontrib>Kawai, Kentaro</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><title>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.</description><subject>Atomic force microscopy</subject><subject>Automation</subject><subject>Crossovers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug delivery systems</subject><subject>Helices</subject><subject>Manufacturing engineering</subject><subject>Mechanical properties</subject><subject>Nanotubes</subject><subject>Porosity</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVkM9LwzAUx4MoOKdXzwFvQmuS5kd7HFOnY6jgvBrSJp0pW1KTdrD_3s4NPHt67_E-7_u-fAG4xigVjIu7-XzyljKeIj6bI3ICRjijIqGIs1MwQojghBaEnIOLGJth5IziEfhc9s66FWx98NF2O6ichkFpq9ZwY6ov5Ww1tG3wrQmdNRH6Gt6_TKAPdqU2FjrlfNeXw2JrFawGlei3JkBtol25S3BWq3U0V8c6Bh-PD8vpU7J4nT1PJ4ukoijrkpKRgqjKmKo0ZcF4blRVMIyEZpTiQnGWU1UKpg02mcBEY4oKxbTKBaeG5tkY3Bx0B6PfvYmdbHwf3PBSEkRZxjKCxUClB-rXZjC1bIPdqLCTGMl9hnKfoWRcHjIcDm4PB9a3f4r_gptGtXuIv-MjKFtdZz-qz4C1</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Ma, Zhipeng</creator><creator>Kawai, Kentaro</creator><creator>Hirai, Yoshikazu</creator><creator>Tsuchiya, Toshiyuki</creator><creator>Tabata, Osamu</creator><general>The Japan Society of Applied Physics</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</title><author>Ma, Zhipeng ; Kawai, Kentaro ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b5292aceecbeb9568eac95107d54419a6584ab75de1e3712d1409a5da8764e483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopy</topic><topic>Automation</topic><topic>Crossovers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug delivery systems</topic><topic>Helices</topic><topic>Manufacturing engineering</topic><topic>Mechanical properties</topic><topic>Nanotubes</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhipeng</creatorcontrib><creatorcontrib>Kawai, Kentaro</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhipeng</au><au>Kawai, Kentaro</au><au>Hirai, Yoshikazu</au><au>Tsuchiya, Toshiyuki</au><au>Tabata, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>56</volume><issue>6S1</issue><spage>6</spage><pages>6-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.</abstract><cop>Tokyo</cop><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.56.06GJ02</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2017-06, Vol.56 (6S1), p.6 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_iop_journals_10_7567_JJAP_56_06GJ02 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Atomic force microscopy Automation Crossovers Deoxyribonucleic acid DNA Drug delivery systems Helices Manufacturing engineering Mechanical properties Nanotubes Porosity |
title | Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20porosity%20and%20radial%20mechanical%20properties%20of%20DNA%20origami%20nanotubes%20via%20crossover%20design&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Ma,%20Zhipeng&rft.date=2017-06-01&rft.volume=56&rft.issue=6S1&rft.spage=6&rft.pages=6-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/JJAP.56.06GJ02&rft_dat=%3Cproquest_iop_j%3E2045353217%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2045353217&rft_id=info:pmid/&rfr_iscdi=true |