Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface

A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2015-01, Vol.54 (1S), p.1-1-01AF03-6
Hauptverfasser: Suda, Yoshiyuki, Oda, Akinori, Kato, Ryo, Yamashita, Ryuma, Tanoue, Hideto, Takikawa, Hirofumi, Tero, Ryugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1-01AF03-6
container_issue 1S
container_start_page 1
container_title Japanese Journal of Applied Physics
container_volume 54
creator Suda, Yoshiyuki
Oda, Akinori
Kato, Ryo
Yamashita, Ryuma
Tanoue, Hideto
Takikawa, Hirofumi
Tero, Ryugo
description A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.
doi_str_mv 10.7567/JJAP.54.01AF03
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_7567_JJAP_54_01AF03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685777129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</originalsourceid><addsrcrecordid>eNp1kcGOFCEQhonRxHH16pmjmvQIDTQ9x8nEVTebaKKeSU1T7DDpbligNftKPqW0s0dNIKSKr74QfkJec7bVqtPvb272X7dKbhnfXzPxhGy4kLqRrFNPyYaxljdy17bPyYucz7XslOQb8vsQprgUKD7MMNJcFvtAg6MFpxhS7RzxBD99SGvTz4O3OBeaIw4eM_VT9PNdXTTMFOgvKJhoXpKDAStNrccRh5L8QI-Qkq-31ufhBOkOqavSckK6zBZTLjDbvyJH4wh5gmb094u3VVOlq_AleeZgzPjq8bwiP64_fD98am6_fPx82N82g2S6NOLIkAsrW1W3azumeiGdAyWVkhZlxzT0GjWg0lag6Iae7yxve2jVUaEUV-TNxRtTuF8wFzPVN-M4woxhyYZ3vdJa83ZX0e0FHVLIOaEzMfkJ0oPhzKyhmDUUo6S5hFIH3l0GfIjmHJZUPz3_H377D_h8hrhC_NsjZ6J14g9P757b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685777129</pqid></control><display><type>article</type><title>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Suda, Yoshiyuki ; Oda, Akinori ; Kato, Ryo ; Yamashita, Ryuma ; Tanoue, Hideto ; Takikawa, Hirofumi ; Tero, Ryugo</creator><creatorcontrib>Suda, Yoshiyuki ; Oda, Akinori ; Kato, Ryo ; Yamashita, Ryuma ; Tanoue, Hideto ; Takikawa, Hirofumi ; Tero, Ryugo</creatorcontrib><description>A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.54.01AF03</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><subject>Computer simulation ; Dielectric barrier discharge ; Electric field strength ; Electric fields ; Fluxes ; Mathematical models ; Temporal logic ; Volt-ampere characteristics</subject><ispartof>Japanese Journal of Applied Physics, 2015-01, Vol.54 (1S), p.1-1-01AF03-6</ispartof><rights>2015 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</citedby><cites>FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/JJAP.54.01AF03/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Suda, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Akinori</creatorcontrib><creatorcontrib>Kato, Ryo</creatorcontrib><creatorcontrib>Yamashita, Ryuma</creatorcontrib><creatorcontrib>Tanoue, Hideto</creatorcontrib><creatorcontrib>Takikawa, Hirofumi</creatorcontrib><creatorcontrib>Tero, Ryugo</creatorcontrib><title>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.</description><subject>Computer simulation</subject><subject>Dielectric barrier discharge</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Fluxes</subject><subject>Mathematical models</subject><subject>Temporal logic</subject><subject>Volt-ampere characteristics</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kcGOFCEQhonRxHH16pmjmvQIDTQ9x8nEVTebaKKeSU1T7DDpbligNftKPqW0s0dNIKSKr74QfkJec7bVqtPvb272X7dKbhnfXzPxhGy4kLqRrFNPyYaxljdy17bPyYucz7XslOQb8vsQprgUKD7MMNJcFvtAg6MFpxhS7RzxBD99SGvTz4O3OBeaIw4eM_VT9PNdXTTMFOgvKJhoXpKDAStNrccRh5L8QI-Qkq-31ufhBOkOqavSckK6zBZTLjDbvyJH4wh5gmb094u3VVOlq_AleeZgzPjq8bwiP64_fD98am6_fPx82N82g2S6NOLIkAsrW1W3azumeiGdAyWVkhZlxzT0GjWg0lag6Iae7yxve2jVUaEUV-TNxRtTuF8wFzPVN-M4woxhyYZ3vdJa83ZX0e0FHVLIOaEzMfkJ0oPhzKyhmDUUo6S5hFIH3l0GfIjmHJZUPz3_H377D_h8hrhC_NsjZ6J14g9P757b</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Suda, Yoshiyuki</creator><creator>Oda, Akinori</creator><creator>Kato, Ryo</creator><creator>Yamashita, Ryuma</creator><creator>Tanoue, Hideto</creator><creator>Takikawa, Hirofumi</creator><creator>Tero, Ryugo</creator><general>The Japan Society of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</title><author>Suda, Yoshiyuki ; Oda, Akinori ; Kato, Ryo ; Yamashita, Ryuma ; Tanoue, Hideto ; Takikawa, Hirofumi ; Tero, Ryugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Dielectric barrier discharge</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Fluxes</topic><topic>Mathematical models</topic><topic>Temporal logic</topic><topic>Volt-ampere characteristics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suda, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Akinori</creatorcontrib><creatorcontrib>Kato, Ryo</creatorcontrib><creatorcontrib>Yamashita, Ryuma</creatorcontrib><creatorcontrib>Tanoue, Hideto</creatorcontrib><creatorcontrib>Takikawa, Hirofumi</creatorcontrib><creatorcontrib>Tero, Ryugo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suda, Yoshiyuki</au><au>Oda, Akinori</au><au>Kato, Ryo</au><au>Yamashita, Ryuma</au><au>Tanoue, Hideto</au><au>Takikawa, Hirofumi</au><au>Tero, Ryugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>54</volume><issue>1S</issue><spage>1</spage><epage>1-01AF03-6</epage><pages>1-1-01AF03-6</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.54.01AF03</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2015-01, Vol.54 (1S), p.1-1-01AF03-6
issn 0021-4922
1347-4065
language eng
recordid cdi_iop_journals_10_7567_JJAP_54_01AF03
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Computer simulation
Dielectric barrier discharge
Electric field strength
Electric fields
Fluxes
Mathematical models
Temporal logic
Volt-ampere characteristics
title Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20of%20temporal%20behavior%20of%20incident%20species%20impinging%20on%20a%20water%20surface%20in%20dielectric%20barrier%20discharge%20for%20the%20understanding%20of%20plasma-liquid%20interface&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Suda,%20Yoshiyuki&rft.date=2015-01-01&rft.volume=54&rft.issue=1S&rft.spage=1&rft.epage=1-01AF03-6&rft.pages=1-1-01AF03-6&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/JJAP.54.01AF03&rft_dat=%3Cproquest_iop_j%3E1685777129%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685777129&rft_id=info:pmid/&rfr_iscdi=true