Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface
A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amou...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2015-01, Vol.54 (1S), p.1-1-01AF03-6 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1-01AF03-6 |
---|---|
container_issue | 1S |
container_start_page | 1 |
container_title | Japanese Journal of Applied Physics |
container_volume | 54 |
creator | Suda, Yoshiyuki Oda, Akinori Kato, Ryo Yamashita, Ryuma Tanoue, Hideto Takikawa, Hirofumi Tero, Ryugo |
description | A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface. |
doi_str_mv | 10.7567/JJAP.54.01AF03 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_7567_JJAP_54_01AF03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685777129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</originalsourceid><addsrcrecordid>eNp1kcGOFCEQhonRxHH16pmjmvQIDTQ9x8nEVTebaKKeSU1T7DDpbligNftKPqW0s0dNIKSKr74QfkJec7bVqtPvb272X7dKbhnfXzPxhGy4kLqRrFNPyYaxljdy17bPyYucz7XslOQb8vsQprgUKD7MMNJcFvtAg6MFpxhS7RzxBD99SGvTz4O3OBeaIw4eM_VT9PNdXTTMFOgvKJhoXpKDAStNrccRh5L8QI-Qkq-31ufhBOkOqavSckK6zBZTLjDbvyJH4wh5gmb094u3VVOlq_AleeZgzPjq8bwiP64_fD98am6_fPx82N82g2S6NOLIkAsrW1W3azumeiGdAyWVkhZlxzT0GjWg0lag6Iae7yxve2jVUaEUV-TNxRtTuF8wFzPVN-M4woxhyYZ3vdJa83ZX0e0FHVLIOaEzMfkJ0oPhzKyhmDUUo6S5hFIH3l0GfIjmHJZUPz3_H377D_h8hrhC_NsjZ6J14g9P757b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685777129</pqid></control><display><type>article</type><title>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Suda, Yoshiyuki ; Oda, Akinori ; Kato, Ryo ; Yamashita, Ryuma ; Tanoue, Hideto ; Takikawa, Hirofumi ; Tero, Ryugo</creator><creatorcontrib>Suda, Yoshiyuki ; Oda, Akinori ; Kato, Ryo ; Yamashita, Ryuma ; Tanoue, Hideto ; Takikawa, Hirofumi ; Tero, Ryugo</creatorcontrib><description>A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.54.01AF03</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><subject>Computer simulation ; Dielectric barrier discharge ; Electric field strength ; Electric fields ; Fluxes ; Mathematical models ; Temporal logic ; Volt-ampere characteristics</subject><ispartof>Japanese Journal of Applied Physics, 2015-01, Vol.54 (1S), p.1-1-01AF03-6</ispartof><rights>2015 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</citedby><cites>FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/JJAP.54.01AF03/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Suda, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Akinori</creatorcontrib><creatorcontrib>Kato, Ryo</creatorcontrib><creatorcontrib>Yamashita, Ryuma</creatorcontrib><creatorcontrib>Tanoue, Hideto</creatorcontrib><creatorcontrib>Takikawa, Hirofumi</creatorcontrib><creatorcontrib>Tero, Ryugo</creatorcontrib><title>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.</description><subject>Computer simulation</subject><subject>Dielectric barrier discharge</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Fluxes</subject><subject>Mathematical models</subject><subject>Temporal logic</subject><subject>Volt-ampere characteristics</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kcGOFCEQhonRxHH16pmjmvQIDTQ9x8nEVTebaKKeSU1T7DDpbligNftKPqW0s0dNIKSKr74QfkJec7bVqtPvb272X7dKbhnfXzPxhGy4kLqRrFNPyYaxljdy17bPyYucz7XslOQb8vsQprgUKD7MMNJcFvtAg6MFpxhS7RzxBD99SGvTz4O3OBeaIw4eM_VT9PNdXTTMFOgvKJhoXpKDAStNrccRh5L8QI-Qkq-31ufhBOkOqavSckK6zBZTLjDbvyJH4wh5gmb094u3VVOlq_AleeZgzPjq8bwiP64_fD98am6_fPx82N82g2S6NOLIkAsrW1W3azumeiGdAyWVkhZlxzT0GjWg0lag6Iae7yxve2jVUaEUV-TNxRtTuF8wFzPVN-M4woxhyYZ3vdJa83ZX0e0FHVLIOaEzMfkJ0oPhzKyhmDUUo6S5hFIH3l0GfIjmHJZUPz3_H377D_h8hrhC_NsjZ6J14g9P757b</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Suda, Yoshiyuki</creator><creator>Oda, Akinori</creator><creator>Kato, Ryo</creator><creator>Yamashita, Ryuma</creator><creator>Tanoue, Hideto</creator><creator>Takikawa, Hirofumi</creator><creator>Tero, Ryugo</creator><general>The Japan Society of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</title><author>Suda, Yoshiyuki ; Oda, Akinori ; Kato, Ryo ; Yamashita, Ryuma ; Tanoue, Hideto ; Takikawa, Hirofumi ; Tero, Ryugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3b0e13d425d42f2605834ffa54554de4607a87e7ae57d3e36c819d128a25b5e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Dielectric barrier discharge</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Fluxes</topic><topic>Mathematical models</topic><topic>Temporal logic</topic><topic>Volt-ampere characteristics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suda, Yoshiyuki</creatorcontrib><creatorcontrib>Oda, Akinori</creatorcontrib><creatorcontrib>Kato, Ryo</creatorcontrib><creatorcontrib>Yamashita, Ryuma</creatorcontrib><creatorcontrib>Tanoue, Hideto</creatorcontrib><creatorcontrib>Takikawa, Hirofumi</creatorcontrib><creatorcontrib>Tero, Ryugo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suda, Yoshiyuki</au><au>Oda, Akinori</au><au>Kato, Ryo</au><au>Yamashita, Ryuma</au><au>Tanoue, Hideto</au><au>Takikawa, Hirofumi</au><au>Tero, Ryugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>54</volume><issue>1S</issue><spage>1</spage><epage>1-01AF03-6</epage><pages>1-1-01AF03-6</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.54.01AF03</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2015-01, Vol.54 (1S), p.1-1-01AF03-6 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_iop_journals_10_7567_JJAP_54_01AF03 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Computer simulation Dielectric barrier discharge Electric field strength Electric fields Fluxes Mathematical models Temporal logic Volt-ampere characteristics |
title | Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20of%20temporal%20behavior%20of%20incident%20species%20impinging%20on%20a%20water%20surface%20in%20dielectric%20barrier%20discharge%20for%20the%20understanding%20of%20plasma-liquid%20interface&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Suda,%20Yoshiyuki&rft.date=2015-01-01&rft.volume=54&rft.issue=1S&rft.spage=1&rft.epage=1-01AF03-6&rft.pages=1-1-01AF03-6&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/JJAP.54.01AF03&rft_dat=%3Cproquest_iop_j%3E1685777129%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685777129&rft_id=info:pmid/&rfr_iscdi=true |