High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film
We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six co...
Gespeichert in:
Veröffentlicht in: | Applied physics express 2015-04, Vol.8 (4), p.46701 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 46701 |
container_title | Applied physics express |
container_volume | 8 |
creator | Liu, Qiang Li, Shuguang Chen, Hailiang Li, Jianshe Fan, Zhenkai |
description | We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field. |
doi_str_mv | 10.7567/APEX.8.046701 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_7567_APEX_8_046701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AP150003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</originalsourceid><addsrcrecordid>eNp10EFLwzAUwPEgCs7p0Xtu4qEzadokO44xnTDQg4K38JqkW0bblCRT9-3tnHjS03uHH4_HH6FrSiai5OJu9rx4m8gJKbgg9ASNqJR5RoTkp7-7kOfoIsYtIbxglI9Qu3TrTRZtF11y7y7tcd9AbH3nNE627W2AtAsWH4QPuIJoDfYd7jc-fSMd9jFBg2tX2YC1hzSAD5c2uIPORw2NxWvfmAE07SU6q6GJ9upnjtHr_eJlvsxWTw-P89kq04ywlFlqgcGUGityoQlQTSpBcxBcVppobQidcigLzkuS10IybUqRG86JLerKWDZG2fGuDj7GYGvVB9dC2CtK1KGVOrRSUh1bDf726J3v1dbvQjd896-9-cNCbz8HU_wo1ZuafQHSmnne</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Qiang ; Li, Shuguang ; Chen, Hailiang ; Li, Jianshe ; Fan, Zhenkai</creator><creatorcontrib>Liu, Qiang ; Li, Shuguang ; Chen, Hailiang ; Li, Jianshe ; Fan, Zhenkai</creatorcontrib><description>We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field.</description><identifier>ISSN: 1882-0778</identifier><identifier>EISSN: 1882-0786</identifier><identifier>DOI: 10.7567/APEX.8.046701</identifier><identifier>CODEN: APEPC4</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><ispartof>Applied physics express, 2015-04, Vol.8 (4), p.46701</ispartof><rights>2015 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</citedby><cites>FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/APEX.8.046701/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Li, Shuguang</creatorcontrib><creatorcontrib>Chen, Hailiang</creatorcontrib><creatorcontrib>Li, Jianshe</creatorcontrib><creatorcontrib>Fan, Zhenkai</creatorcontrib><title>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</title><title>Applied physics express</title><addtitle>Appl. Phys. Express</addtitle><description>We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field.</description><issn>1882-0778</issn><issn>1882-0786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUwPEgCs7p0Xtu4qEzadokO44xnTDQg4K38JqkW0bblCRT9-3tnHjS03uHH4_HH6FrSiai5OJu9rx4m8gJKbgg9ASNqJR5RoTkp7-7kOfoIsYtIbxglI9Qu3TrTRZtF11y7y7tcd9AbH3nNE627W2AtAsWH4QPuIJoDfYd7jc-fSMd9jFBg2tX2YC1hzSAD5c2uIPORw2NxWvfmAE07SU6q6GJ9upnjtHr_eJlvsxWTw-P89kq04ywlFlqgcGUGityoQlQTSpBcxBcVppobQidcigLzkuS10IybUqRG86JLerKWDZG2fGuDj7GYGvVB9dC2CtK1KGVOrRSUh1bDf726J3v1dbvQjd896-9-cNCbz8HU_wo1ZuafQHSmnne</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Liu, Qiang</creator><creator>Li, Shuguang</creator><creator>Chen, Hailiang</creator><creator>Li, Jianshe</creator><creator>Fan, Zhenkai</creator><general>The Japan Society of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</title><author>Liu, Qiang ; Li, Shuguang ; Chen, Hailiang ; Li, Jianshe ; Fan, Zhenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Li, Shuguang</creatorcontrib><creatorcontrib>Chen, Hailiang</creatorcontrib><creatorcontrib>Li, Jianshe</creatorcontrib><creatorcontrib>Fan, Zhenkai</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiang</au><au>Li, Shuguang</au><au>Chen, Hailiang</au><au>Li, Jianshe</au><au>Fan, Zhenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</atitle><jtitle>Applied physics express</jtitle><addtitle>Appl. Phys. Express</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>8</volume><issue>4</issue><spage>46701</spage><pages>46701-</pages><issn>1882-0778</issn><eissn>1882-0786</eissn><coden>APEPC4</coden><abstract>We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.7567/APEX.8.046701</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1882-0778 |
ispartof | Applied physics express, 2015-04, Vol.8 (4), p.46701 |
issn | 1882-0778 1882-0786 |
language | eng |
recordid | cdi_iop_journals_10_7567_APEX_8_046701 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-sensitivity%20plasmonic%20temperature%20sensor%20based%20on%20photonic%20crystal%20fiber%20coated%20with%20nanoscale%20gold%20film&rft.jtitle=Applied%20physics%20express&rft.au=Liu,%20Qiang&rft.date=2015-04-01&rft.volume=8&rft.issue=4&rft.spage=46701&rft.pages=46701-&rft.issn=1882-0778&rft.eissn=1882-0786&rft.coden=APEPC4&rft_id=info:doi/10.7567/APEX.8.046701&rft_dat=%3Ciop_cross%3EAP150003%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |