High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film

We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics express 2015-04, Vol.8 (4), p.46701
Hauptverfasser: Liu, Qiang, Li, Shuguang, Chen, Hailiang, Li, Jianshe, Fan, Zhenkai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 46701
container_title Applied physics express
container_volume 8
creator Liu, Qiang
Li, Shuguang
Chen, Hailiang
Li, Jianshe
Fan, Zhenkai
description We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field.
doi_str_mv 10.7567/APEX.8.046701
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_7567_APEX_8_046701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AP150003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</originalsourceid><addsrcrecordid>eNp10EFLwzAUwPEgCs7p0Xtu4qEzadokO44xnTDQg4K38JqkW0bblCRT9-3tnHjS03uHH4_HH6FrSiai5OJu9rx4m8gJKbgg9ASNqJR5RoTkp7-7kOfoIsYtIbxglI9Qu3TrTRZtF11y7y7tcd9AbH3nNE627W2AtAsWH4QPuIJoDfYd7jc-fSMd9jFBg2tX2YC1hzSAD5c2uIPORw2NxWvfmAE07SU6q6GJ9upnjtHr_eJlvsxWTw-P89kq04ywlFlqgcGUGityoQlQTSpBcxBcVppobQidcigLzkuS10IybUqRG86JLerKWDZG2fGuDj7GYGvVB9dC2CtK1KGVOrRSUh1bDf726J3v1dbvQjd896-9-cNCbz8HU_wo1ZuafQHSmnne</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Qiang ; Li, Shuguang ; Chen, Hailiang ; Li, Jianshe ; Fan, Zhenkai</creator><creatorcontrib>Liu, Qiang ; Li, Shuguang ; Chen, Hailiang ; Li, Jianshe ; Fan, Zhenkai</creatorcontrib><description>We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field.</description><identifier>ISSN: 1882-0778</identifier><identifier>EISSN: 1882-0786</identifier><identifier>DOI: 10.7567/APEX.8.046701</identifier><identifier>CODEN: APEPC4</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><ispartof>Applied physics express, 2015-04, Vol.8 (4), p.46701</ispartof><rights>2015 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</citedby><cites>FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/APEX.8.046701/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Li, Shuguang</creatorcontrib><creatorcontrib>Chen, Hailiang</creatorcontrib><creatorcontrib>Li, Jianshe</creatorcontrib><creatorcontrib>Fan, Zhenkai</creatorcontrib><title>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</title><title>Applied physics express</title><addtitle>Appl. Phys. Express</addtitle><description>We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field.</description><issn>1882-0778</issn><issn>1882-0786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUwPEgCs7p0Xtu4qEzadokO44xnTDQg4K38JqkW0bblCRT9-3tnHjS03uHH4_HH6FrSiai5OJu9rx4m8gJKbgg9ASNqJR5RoTkp7-7kOfoIsYtIbxglI9Qu3TrTRZtF11y7y7tcd9AbH3nNE627W2AtAsWH4QPuIJoDfYd7jc-fSMd9jFBg2tX2YC1hzSAD5c2uIPORw2NxWvfmAE07SU6q6GJ9upnjtHr_eJlvsxWTw-P89kq04ywlFlqgcGUGityoQlQTSpBcxBcVppobQidcigLzkuS10IybUqRG86JLerKWDZG2fGuDj7GYGvVB9dC2CtK1KGVOrRSUh1bDf726J3v1dbvQjd896-9-cNCbz8HU_wo1ZuafQHSmnne</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Liu, Qiang</creator><creator>Li, Shuguang</creator><creator>Chen, Hailiang</creator><creator>Li, Jianshe</creator><creator>Fan, Zhenkai</creator><general>The Japan Society of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</title><author>Liu, Qiang ; Li, Shuguang ; Chen, Hailiang ; Li, Jianshe ; Fan, Zhenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e1ea3a91de727c0a1c0b712a768bc0ccd0196a5466502f783cd572d660e4fbde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Li, Shuguang</creatorcontrib><creatorcontrib>Chen, Hailiang</creatorcontrib><creatorcontrib>Li, Jianshe</creatorcontrib><creatorcontrib>Fan, Zhenkai</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiang</au><au>Li, Shuguang</au><au>Chen, Hailiang</au><au>Li, Jianshe</au><au>Fan, Zhenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film</atitle><jtitle>Applied physics express</jtitle><addtitle>Appl. Phys. Express</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>8</volume><issue>4</issue><spage>46701</spage><pages>46701-</pages><issn>1882-0778</issn><eissn>1882-0786</eissn><coden>APEPC4</coden><abstract>We demonstrate a photonic crystal fiber temperature sensor based on surface plasmon resonance and evaluate it using the finite element method. A temperature-sensitive material is injected into the central air hole of the photonic crystal fiber. The air hole is coated with nanoscale gold film. Six cores are formed by removing air holes in the second layer, which supports the core mode. The coupling between the core mode and the surface plasmon polariton mode occurs as the phase matching condition is satisfied. The average sensitivity and linearity become −2.15 nm/°C and 0.99991, respectively. The length of this fiber is only 1 mm. Our temperature sensor is competitive within the temperature sensor field.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.7567/APEX.8.046701</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1882-0778
ispartof Applied physics express, 2015-04, Vol.8 (4), p.46701
issn 1882-0778
1882-0786
language eng
recordid cdi_iop_journals_10_7567_APEX_8_046701
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-sensitivity%20plasmonic%20temperature%20sensor%20based%20on%20photonic%20crystal%20fiber%20coated%20with%20nanoscale%20gold%20film&rft.jtitle=Applied%20physics%20express&rft.au=Liu,%20Qiang&rft.date=2015-04-01&rft.volume=8&rft.issue=4&rft.spage=46701&rft.pages=46701-&rft.issn=1882-0778&rft.eissn=1882-0786&rft.coden=APEPC4&rft_id=info:doi/10.7567/APEX.8.046701&rft_dat=%3Ciop_cross%3EAP150003%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true