Low-hole concentration polycrystalline germanium by CO2 laser annealing for the fabrication of an enhancement-mode nMOSFET
A p-type polycrystalline Ge (poly-Ge) film processed by UV and CO2 laser annealing reduces the hole concentration from 6 × 1018 to 2 × 1016 cm−3, accompanied by poly-grain growth. The decrease in hole concentration arises from the defect annealing using a CO2 laser, as demonstrated by the changes in...
Gespeichert in:
Veröffentlicht in: | Applied physics express 2018-10, Vol.11 (10) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Applied physics express |
container_volume | 11 |
creator | Kasirajan, Hari Anand Huang, Wen-Hsien Kao, Ming-Hsuan Wang, Hsing-Hsiang Shieh, Jia-Min Pan, Fu-Ming Shen, Chang-Hong |
description | A p-type polycrystalline Ge (poly-Ge) film processed by UV and CO2 laser annealing reduces the hole concentration from 6 × 1018 to 2 × 1016 cm−3, accompanied by poly-grain growth. The decrease in hole concentration arises from the defect annealing using a CO2 laser, as demonstrated by the changes in the work function, that is, the valence-band maximum (VBM). The laser processes reduce the thermal budget for the fabrication of an enhancement-mode poly-Ge nMOSFET, which has a Ion/Ioff ratio of 5 × 103, a Vth of 2 V, and a subthreshold swing of 250 mV/dec., and will be potential fabrication methods for monolithic 3D integrated circuits in the future. |
doi_str_mv | 10.7567/APEX.11.101305 |
format | Article |
fullrecord | <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_7567_APEX_11_101305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AP180673</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-9a6fea48d2cb255e8c271acc1e9039f61c931adc1fe39175210e55ccaef8c1273</originalsourceid><addsrcrecordid>eNptkE1Lw0AQQBdRsFavnveqkLqz6WaTYyn1AyoVVPAWppvZNiXZDZuI1l9vSoonTzMMjzfwGLsGMdEq0Xezl8XHBGACAmKhTtgI0lRGQqfJ6d-u03N20bY7IZJpDMmI_Sz9V7T1FXHjnSHXBexK73jjq70J-7bDqiod8Q2FGl35WfP1ns9XklfYUuDoHGEPbLj1gXdb4hbXoTSDxNse4OS22KvrXh7VviDunlev94u3S3ZmsWrp6jjH7L2_zh-j5erhaT5bRqUUqosyTCzhNC2kWUulKDVSAxoDlIk4swmYLAYsDFiKM9BKgiCljEGyqQGp4zG7Hbylb_Kd_wyu_5aDyA_V8kO1HCAfqvXwzT8wNvQ9QEcubwob_wIsX2_G</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-hole concentration polycrystalline germanium by CO2 laser annealing for the fabrication of an enhancement-mode nMOSFET</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Kasirajan, Hari Anand ; Huang, Wen-Hsien ; Kao, Ming-Hsuan ; Wang, Hsing-Hsiang ; Shieh, Jia-Min ; Pan, Fu-Ming ; Shen, Chang-Hong</creator><creatorcontrib>Kasirajan, Hari Anand ; Huang, Wen-Hsien ; Kao, Ming-Hsuan ; Wang, Hsing-Hsiang ; Shieh, Jia-Min ; Pan, Fu-Ming ; Shen, Chang-Hong</creatorcontrib><description>A p-type polycrystalline Ge (poly-Ge) film processed by UV and CO2 laser annealing reduces the hole concentration from 6 × 1018 to 2 × 1016 cm−3, accompanied by poly-grain growth. The decrease in hole concentration arises from the defect annealing using a CO2 laser, as demonstrated by the changes in the work function, that is, the valence-band maximum (VBM). The laser processes reduce the thermal budget for the fabrication of an enhancement-mode poly-Ge nMOSFET, which has a Ion/Ioff ratio of 5 × 103, a Vth of 2 V, and a subthreshold swing of 250 mV/dec., and will be potential fabrication methods for monolithic 3D integrated circuits in the future.</description><identifier>ISSN: 1882-0778</identifier><identifier>EISSN: 1882-0786</identifier><identifier>DOI: 10.7567/APEX.11.101305</identifier><identifier>CODEN: APEPC4</identifier><language>eng ; jpn</language><publisher>The Japan Society of Applied Physics</publisher><ispartof>Applied physics express, 2018-10, Vol.11 (10)</ispartof><rights>2018 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/APEX.11.101305/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Kasirajan, Hari Anand</creatorcontrib><creatorcontrib>Huang, Wen-Hsien</creatorcontrib><creatorcontrib>Kao, Ming-Hsuan</creatorcontrib><creatorcontrib>Wang, Hsing-Hsiang</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Pan, Fu-Ming</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><title>Low-hole concentration polycrystalline germanium by CO2 laser annealing for the fabrication of an enhancement-mode nMOSFET</title><title>Applied physics express</title><addtitle>Appl. Phys. Express</addtitle><description>A p-type polycrystalline Ge (poly-Ge) film processed by UV and CO2 laser annealing reduces the hole concentration from 6 × 1018 to 2 × 1016 cm−3, accompanied by poly-grain growth. The decrease in hole concentration arises from the defect annealing using a CO2 laser, as demonstrated by the changes in the work function, that is, the valence-band maximum (VBM). The laser processes reduce the thermal budget for the fabrication of an enhancement-mode poly-Ge nMOSFET, which has a Ion/Ioff ratio of 5 × 103, a Vth of 2 V, and a subthreshold swing of 250 mV/dec., and will be potential fabrication methods for monolithic 3D integrated circuits in the future.</description><issn>1882-0778</issn><issn>1882-0786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkE1Lw0AQQBdRsFavnveqkLqz6WaTYyn1AyoVVPAWppvZNiXZDZuI1l9vSoonTzMMjzfwGLsGMdEq0Xezl8XHBGACAmKhTtgI0lRGQqfJ6d-u03N20bY7IZJpDMmI_Sz9V7T1FXHjnSHXBexK73jjq70J-7bDqiod8Q2FGl35WfP1ns9XklfYUuDoHGEPbLj1gXdb4hbXoTSDxNse4OS22KvrXh7VviDunlev94u3S3ZmsWrp6jjH7L2_zh-j5erhaT5bRqUUqosyTCzhNC2kWUulKDVSAxoDlIk4swmYLAYsDFiKM9BKgiCljEGyqQGp4zG7Hbylb_Kd_wyu_5aDyA_V8kO1HCAfqvXwzT8wNvQ9QEcubwob_wIsX2_G</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kasirajan, Hari Anand</creator><creator>Huang, Wen-Hsien</creator><creator>Kao, Ming-Hsuan</creator><creator>Wang, Hsing-Hsiang</creator><creator>Shieh, Jia-Min</creator><creator>Pan, Fu-Ming</creator><creator>Shen, Chang-Hong</creator><general>The Japan Society of Applied Physics</general><scope/></search><sort><creationdate>20181001</creationdate><title>Low-hole concentration polycrystalline germanium by CO2 laser annealing for the fabrication of an enhancement-mode nMOSFET</title><author>Kasirajan, Hari Anand ; Huang, Wen-Hsien ; Kao, Ming-Hsuan ; Wang, Hsing-Hsiang ; Shieh, Jia-Min ; Pan, Fu-Ming ; Shen, Chang-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-9a6fea48d2cb255e8c271acc1e9039f61c931adc1fe39175210e55ccaef8c1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasirajan, Hari Anand</creatorcontrib><creatorcontrib>Huang, Wen-Hsien</creatorcontrib><creatorcontrib>Kao, Ming-Hsuan</creatorcontrib><creatorcontrib>Wang, Hsing-Hsiang</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Pan, Fu-Ming</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><jtitle>Applied physics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasirajan, Hari Anand</au><au>Huang, Wen-Hsien</au><au>Kao, Ming-Hsuan</au><au>Wang, Hsing-Hsiang</au><au>Shieh, Jia-Min</au><au>Pan, Fu-Ming</au><au>Shen, Chang-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-hole concentration polycrystalline germanium by CO2 laser annealing for the fabrication of an enhancement-mode nMOSFET</atitle><jtitle>Applied physics express</jtitle><addtitle>Appl. Phys. Express</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>11</volume><issue>10</issue><issn>1882-0778</issn><eissn>1882-0786</eissn><coden>APEPC4</coden><abstract>A p-type polycrystalline Ge (poly-Ge) film processed by UV and CO2 laser annealing reduces the hole concentration from 6 × 1018 to 2 × 1016 cm−3, accompanied by poly-grain growth. The decrease in hole concentration arises from the defect annealing using a CO2 laser, as demonstrated by the changes in the work function, that is, the valence-band maximum (VBM). The laser processes reduce the thermal budget for the fabrication of an enhancement-mode poly-Ge nMOSFET, which has a Ion/Ioff ratio of 5 × 103, a Vth of 2 V, and a subthreshold swing of 250 mV/dec., and will be potential fabrication methods for monolithic 3D integrated circuits in the future.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.7567/APEX.11.101305</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1882-0778 |
ispartof | Applied physics express, 2018-10, Vol.11 (10) |
issn | 1882-0778 1882-0786 |
language | eng ; jpn |
recordid | cdi_iop_journals_10_7567_APEX_11_101305 |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals |
title | Low-hole concentration polycrystalline germanium by CO2 laser annealing for the fabrication of an enhancement-mode nMOSFET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-hole%20concentration%20polycrystalline%20germanium%20by%20CO2%20laser%20annealing%20for%20the%20fabrication%20of%20an%20enhancement-mode%20nMOSFET&rft.jtitle=Applied%20physics%20express&rft.au=Kasirajan,%20Hari%20Anand&rft.date=2018-10-01&rft.volume=11&rft.issue=10&rft.issn=1882-0778&rft.eissn=1882-0786&rft.coden=APEPC4&rft_id=info:doi/10.7567/APEX.11.101305&rft_dat=%3Ciop%3EAP180673%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |