Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes
On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used v...
Gespeichert in:
Veröffentlicht in: | The planetary science journal 2021-06, Vol.2 (3), p.118 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 118 |
container_title | The planetary science journal |
container_volume | 2 |
creator | Engle, Anna E. Hanley, Jennifer Dustrud, Shyanne Thompson, Garrett Lindberg, Gerrick E. Grundy, William M. Tegler, Stephen C. |
description | On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition. |
doi_str_mv | 10.3847/PSJ/abf7d0 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_3847_PSJ_abf7d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psjabf7d0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</originalsourceid><addsrcrecordid>eNptkLtOwzAYhS0EElXpwhNYQmJACvUtjjOiUqAoiEotrJYb2ySluch2h259ByZer09CaBkYOv1n-M7Rrw-AS4xuqWDJcDp7HqqFTTQ6AT3CKYkopeL0Xz4HA--XCCESY8wT3gPv00J5A-9L9eFUBW3jYCgMfDGhULXZbb_G-wBnGx9MBVWt4SR4OKnaVZmrUDa135fmZVD1bvvtYaY-jb8AZ1atvBn83T54exjPR09R9vo4Gd1lUU55EiKGLbMmyU1uxULHVNE4x1qzNCVpqkXCCKMcY9RxXOCYMMGFSRGjmKQLoRDtg5vDbu4a752xsnVlpdxGYiR_pchOijxI6eCrA1w2rVw2a1d3r8nWLyWRVGIsZKttR10foY7M_QB8Ym9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Engle, Anna E. ; Hanley, Jennifer ; Dustrud, Shyanne ; Thompson, Garrett ; Lindberg, Gerrick E. ; Grundy, William M. ; Tegler, Stephen C.</creator><creatorcontrib>Engle, Anna E. ; Hanley, Jennifer ; Dustrud, Shyanne ; Thompson, Garrett ; Lindberg, Gerrick E. ; Grundy, William M. ; Tegler, Stephen C.</creatorcontrib><description>On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition.</description><identifier>ISSN: 2632-3338</identifier><identifier>EISSN: 2632-3338</identifier><identifier>DOI: 10.3847/PSJ/abf7d0</identifier><language>eng</language><publisher>The American Astronomical Society</publisher><subject>Saturnian satellites</subject><ispartof>The planetary science journal, 2021-06, Vol.2 (3), p.118</ispartof><rights>2021. The Author(s). Published by the American Astronomical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</citedby><cites>FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</cites><orcidid>0000-0002-7894-7056 ; 0000-0002-0801-7654 ; 0000-0002-5292-4200 ; 0000-0002-8296-6540 ; 0000-0002-6794-495X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/PSJ/abf7d0/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Engle, Anna E.</creatorcontrib><creatorcontrib>Hanley, Jennifer</creatorcontrib><creatorcontrib>Dustrud, Shyanne</creatorcontrib><creatorcontrib>Thompson, Garrett</creatorcontrib><creatorcontrib>Lindberg, Gerrick E.</creatorcontrib><creatorcontrib>Grundy, William M.</creatorcontrib><creatorcontrib>Tegler, Stephen C.</creatorcontrib><title>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</title><title>The planetary science journal</title><addtitle>PSJ</addtitle><addtitle>Planet. Sci. J</addtitle><description>On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition.</description><subject>Saturnian satellites</subject><issn>2632-3338</issn><issn>2632-3338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkLtOwzAYhS0EElXpwhNYQmJACvUtjjOiUqAoiEotrJYb2ySluch2h259ByZer09CaBkYOv1n-M7Rrw-AS4xuqWDJcDp7HqqFTTQ6AT3CKYkopeL0Xz4HA--XCCESY8wT3gPv00J5A-9L9eFUBW3jYCgMfDGhULXZbb_G-wBnGx9MBVWt4SR4OKnaVZmrUDa135fmZVD1bvvtYaY-jb8AZ1atvBn83T54exjPR09R9vo4Gd1lUU55EiKGLbMmyU1uxULHVNE4x1qzNCVpqkXCCKMcY9RxXOCYMMGFSRGjmKQLoRDtg5vDbu4a752xsnVlpdxGYiR_pchOijxI6eCrA1w2rVw2a1d3r8nWLyWRVGIsZKttR10foY7M_QB8Ym9M</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Engle, Anna E.</creator><creator>Hanley, Jennifer</creator><creator>Dustrud, Shyanne</creator><creator>Thompson, Garrett</creator><creator>Lindberg, Gerrick E.</creator><creator>Grundy, William M.</creator><creator>Tegler, Stephen C.</creator><general>The American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7894-7056</orcidid><orcidid>https://orcid.org/0000-0002-0801-7654</orcidid><orcidid>https://orcid.org/0000-0002-5292-4200</orcidid><orcidid>https://orcid.org/0000-0002-8296-6540</orcidid><orcidid>https://orcid.org/0000-0002-6794-495X</orcidid></search><sort><creationdate>20210601</creationdate><title>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</title><author>Engle, Anna E. ; Hanley, Jennifer ; Dustrud, Shyanne ; Thompson, Garrett ; Lindberg, Gerrick E. ; Grundy, William M. ; Tegler, Stephen C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Saturnian satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engle, Anna E.</creatorcontrib><creatorcontrib>Hanley, Jennifer</creatorcontrib><creatorcontrib>Dustrud, Shyanne</creatorcontrib><creatorcontrib>Thompson, Garrett</creatorcontrib><creatorcontrib>Lindberg, Gerrick E.</creatorcontrib><creatorcontrib>Grundy, William M.</creatorcontrib><creatorcontrib>Tegler, Stephen C.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>The planetary science journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engle, Anna E.</au><au>Hanley, Jennifer</au><au>Dustrud, Shyanne</au><au>Thompson, Garrett</au><au>Lindberg, Gerrick E.</au><au>Grundy, William M.</au><au>Tegler, Stephen C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</atitle><jtitle>The planetary science journal</jtitle><stitle>PSJ</stitle><addtitle>Planet. Sci. J</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>2</volume><issue>3</issue><spage>118</spage><pages>118-</pages><issn>2632-3338</issn><eissn>2632-3338</eissn><abstract>On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition.</abstract><pub>The American Astronomical Society</pub><doi>10.3847/PSJ/abf7d0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7894-7056</orcidid><orcidid>https://orcid.org/0000-0002-0801-7654</orcidid><orcidid>https://orcid.org/0000-0002-5292-4200</orcidid><orcidid>https://orcid.org/0000-0002-8296-6540</orcidid><orcidid>https://orcid.org/0000-0002-6794-495X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-3338 |
ispartof | The planetary science journal, 2021-06, Vol.2 (3), p.118 |
issn | 2632-3338 2632-3338 |
language | eng |
recordid | cdi_iop_journals_10_3847_PSJ_abf7d0 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals |
subjects | Saturnian satellites |
title | Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Diagram%20for%20the%20Methane%E2%80%93Ethane%20System%20and%20Its%20Implications%20for%20Titan%E2%80%99s%20Lakes&rft.jtitle=The%20planetary%20science%20journal&rft.au=Engle,%20Anna%20E.&rft.date=2021-06-01&rft.volume=2&rft.issue=3&rft.spage=118&rft.pages=118-&rft.issn=2632-3338&rft.eissn=2632-3338&rft_id=info:doi/10.3847/PSJ/abf7d0&rft_dat=%3Ciop_cross%3Epsjabf7d0%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |