Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes

On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The planetary science journal 2021-06, Vol.2 (3), p.118
Hauptverfasser: Engle, Anna E., Hanley, Jennifer, Dustrud, Shyanne, Thompson, Garrett, Lindberg, Gerrick E., Grundy, William M., Tegler, Stephen C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 118
container_title The planetary science journal
container_volume 2
creator Engle, Anna E.
Hanley, Jennifer
Dustrud, Shyanne
Thompson, Garrett
Lindberg, Gerrick E.
Grundy, William M.
Tegler, Stephen C.
description On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition.
doi_str_mv 10.3847/PSJ/abf7d0
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_3847_PSJ_abf7d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psjabf7d0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</originalsourceid><addsrcrecordid>eNptkLtOwzAYhS0EElXpwhNYQmJACvUtjjOiUqAoiEotrJYb2ySluch2h259ByZer09CaBkYOv1n-M7Rrw-AS4xuqWDJcDp7HqqFTTQ6AT3CKYkopeL0Xz4HA--XCCESY8wT3gPv00J5A-9L9eFUBW3jYCgMfDGhULXZbb_G-wBnGx9MBVWt4SR4OKnaVZmrUDa135fmZVD1bvvtYaY-jb8AZ1atvBn83T54exjPR09R9vo4Gd1lUU55EiKGLbMmyU1uxULHVNE4x1qzNCVpqkXCCKMcY9RxXOCYMMGFSRGjmKQLoRDtg5vDbu4a752xsnVlpdxGYiR_pchOijxI6eCrA1w2rVw2a1d3r8nWLyWRVGIsZKttR10foY7M_QB8Ym9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Engle, Anna E. ; Hanley, Jennifer ; Dustrud, Shyanne ; Thompson, Garrett ; Lindberg, Gerrick E. ; Grundy, William M. ; Tegler, Stephen C.</creator><creatorcontrib>Engle, Anna E. ; Hanley, Jennifer ; Dustrud, Shyanne ; Thompson, Garrett ; Lindberg, Gerrick E. ; Grundy, William M. ; Tegler, Stephen C.</creatorcontrib><description>On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition.</description><identifier>ISSN: 2632-3338</identifier><identifier>EISSN: 2632-3338</identifier><identifier>DOI: 10.3847/PSJ/abf7d0</identifier><language>eng</language><publisher>The American Astronomical Society</publisher><subject>Saturnian satellites</subject><ispartof>The planetary science journal, 2021-06, Vol.2 (3), p.118</ispartof><rights>2021. The Author(s). Published by the American Astronomical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</citedby><cites>FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</cites><orcidid>0000-0002-7894-7056 ; 0000-0002-0801-7654 ; 0000-0002-5292-4200 ; 0000-0002-8296-6540 ; 0000-0002-6794-495X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/PSJ/abf7d0/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Engle, Anna E.</creatorcontrib><creatorcontrib>Hanley, Jennifer</creatorcontrib><creatorcontrib>Dustrud, Shyanne</creatorcontrib><creatorcontrib>Thompson, Garrett</creatorcontrib><creatorcontrib>Lindberg, Gerrick E.</creatorcontrib><creatorcontrib>Grundy, William M.</creatorcontrib><creatorcontrib>Tegler, Stephen C.</creatorcontrib><title>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</title><title>The planetary science journal</title><addtitle>PSJ</addtitle><addtitle>Planet. Sci. J</addtitle><description>On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition.</description><subject>Saturnian satellites</subject><issn>2632-3338</issn><issn>2632-3338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkLtOwzAYhS0EElXpwhNYQmJACvUtjjOiUqAoiEotrJYb2ySluch2h259ByZer09CaBkYOv1n-M7Rrw-AS4xuqWDJcDp7HqqFTTQ6AT3CKYkopeL0Xz4HA--XCCESY8wT3gPv00J5A-9L9eFUBW3jYCgMfDGhULXZbb_G-wBnGx9MBVWt4SR4OKnaVZmrUDa135fmZVD1bvvtYaY-jb8AZ1atvBn83T54exjPR09R9vo4Gd1lUU55EiKGLbMmyU1uxULHVNE4x1qzNCVpqkXCCKMcY9RxXOCYMMGFSRGjmKQLoRDtg5vDbu4a752xsnVlpdxGYiR_pchOijxI6eCrA1w2rVw2a1d3r8nWLyWRVGIsZKttR10foY7M_QB8Ym9M</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Engle, Anna E.</creator><creator>Hanley, Jennifer</creator><creator>Dustrud, Shyanne</creator><creator>Thompson, Garrett</creator><creator>Lindberg, Gerrick E.</creator><creator>Grundy, William M.</creator><creator>Tegler, Stephen C.</creator><general>The American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7894-7056</orcidid><orcidid>https://orcid.org/0000-0002-0801-7654</orcidid><orcidid>https://orcid.org/0000-0002-5292-4200</orcidid><orcidid>https://orcid.org/0000-0002-8296-6540</orcidid><orcidid>https://orcid.org/0000-0002-6794-495X</orcidid></search><sort><creationdate>20210601</creationdate><title>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</title><author>Engle, Anna E. ; Hanley, Jennifer ; Dustrud, Shyanne ; Thompson, Garrett ; Lindberg, Gerrick E. ; Grundy, William M. ; Tegler, Stephen C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-41f4fe7cecf8bd53a35c1dd499299d874243611041f681524868e9043129b8a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Saturnian satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engle, Anna E.</creatorcontrib><creatorcontrib>Hanley, Jennifer</creatorcontrib><creatorcontrib>Dustrud, Shyanne</creatorcontrib><creatorcontrib>Thompson, Garrett</creatorcontrib><creatorcontrib>Lindberg, Gerrick E.</creatorcontrib><creatorcontrib>Grundy, William M.</creatorcontrib><creatorcontrib>Tegler, Stephen C.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>The planetary science journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engle, Anna E.</au><au>Hanley, Jennifer</au><au>Dustrud, Shyanne</au><au>Thompson, Garrett</au><au>Lindberg, Gerrick E.</au><au>Grundy, William M.</au><au>Tegler, Stephen C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes</atitle><jtitle>The planetary science journal</jtitle><stitle>PSJ</stitle><addtitle>Planet. Sci. J</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>2</volume><issue>3</issue><spage>118</spage><pages>118-</pages><issn>2632-3338</issn><eissn>2632-3338</eissn><abstract>On Titan, methane (CH 4 ) and ethane (C 2 H 6 ) are the dominant species found in the lakes and seas. In this study, we have combined laboratory work and modeling to refine the methane–ethane binary phase diagram at low temperatures and probe how the molecules interact at these conditions. We used visual inspection for the liquidus and Raman spectroscopy for the solidus. Through these methods, we determined a eutectic point of 71.15 ± 0.5 K at a composition of 0.644 ± 0.018 methane–0.356 ± 0.018 ethane mole fraction from the liquidus data. Using the solidus data, we found a eutectic isotherm temperature of 72.2 K with a standard deviation of 0.4 K. In addition to mapping the binary system, we looked at the solid–solid transitions of pure ethane and found that, when cooling, the transition of solid I–III occurred at 89.45 ± 0.2 K. The warming sequence showed transitions of solid III–II occurring at 89.85 ± 0.2 K and solid II–I at 89.65 ± 0.2 K. Ideal predictions were compared with molecular dynamics simulations to reveal that the methane–ethane system behaves almost ideally, and the largest deviations occur as the mixing ratio approaches the eutectic composition.</abstract><pub>The American Astronomical Society</pub><doi>10.3847/PSJ/abf7d0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7894-7056</orcidid><orcidid>https://orcid.org/0000-0002-0801-7654</orcidid><orcidid>https://orcid.org/0000-0002-5292-4200</orcidid><orcidid>https://orcid.org/0000-0002-8296-6540</orcidid><orcidid>https://orcid.org/0000-0002-6794-495X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-3338
ispartof The planetary science journal, 2021-06, Vol.2 (3), p.118
issn 2632-3338
2632-3338
language eng
recordid cdi_iop_journals_10_3847_PSJ_abf7d0
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals
subjects Saturnian satellites
title Phase Diagram for the Methane–Ethane System and Its Implications for Titan’s Lakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Diagram%20for%20the%20Methane%E2%80%93Ethane%20System%20and%20Its%20Implications%20for%20Titan%E2%80%99s%20Lakes&rft.jtitle=The%20planetary%20science%20journal&rft.au=Engle,%20Anna%20E.&rft.date=2021-06-01&rft.volume=2&rft.issue=3&rft.spage=118&rft.pages=118-&rft.issn=2632-3338&rft.eissn=2632-3338&rft_id=info:doi/10.3847/PSJ/abf7d0&rft_dat=%3Ciop_cross%3Epsjabf7d0%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true