Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile

We use 3D k -means clustering to characterize galaxy substructure in the A2146 cluster of galaxies ( z = 0.2343). This method objectively characterizes the cluster’s substructure using projected position and velocity data for 67 galaxies within a 2.305 Mpc circular region centered on the cluster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2024-02, Vol.961 (2), p.L36
Hauptverfasser: Henriksen, Mark J., Panda, Prajwal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L36
container_title Astrophysical journal. Letters
container_volume 961
creator Henriksen, Mark J.
Panda, Prajwal
description We use 3D k -means clustering to characterize galaxy substructure in the A2146 cluster of galaxies ( z = 0.2343). This method objectively characterizes the cluster’s substructure using projected position and velocity data for 67 galaxies within a 2.305 Mpc circular region centered on the cluster's optical center. The optimal number of substructures is found to be four. Four distinct substructures with rms velocity typical of galaxy groups or low-mass subclusters, when compared to cosmological simulations of galaxy cluster formation, suggest that A2146 is in the early stages of formation. We utilize this disequilibrium, which is so prevalent in galaxy clusters at all redshifts, to construct a radial mass distribution. Substructures are bound but not virialized. This method is in contrast to previous kinematical analyses, which have assumed virialization, and ignored the ubiquitous clumping of galaxies. The best-fitting radial mass profile is much less centrally concentrated than the well-known Navarro–Frenk–White profile, indicating that the dark-matter-dominated mass distribution is flatter pre-equilibrium, becoming more centrally peaked in equilibrium through the merging of the substructure.
doi_str_mv 10.3847/2041-8213/ad1ede
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_ad1ede</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fbcb5e0849e2482e8da1c03fa24f1b51</doaj_id><sourcerecordid>2919815828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a6fd6fae428fd29603a9cdf6d8c0f463cd74c8f2bf884297ba3181a2de29d3943</originalsourceid><addsrcrecordid>eNp9kctLxDAQxosouD7uHgOCJ9fNq93kKOv6gBU96MVLmOahKbWpSQvrf2_XynoRTzN8881vhpksOyH4ggk-n1HMyVRQwmZgiDV2J5tspd1tjvP97CClCmOKCyIm2cty3dbBd755Rfeg33xj0cpCbDYCNAZd-WQ_el_7Mvr-HfkG3UAN60-0qPvU2ZhQF9BD2cFQgQGREnqMwfnaHmV7Dupkj3_iYfZ8vXxa3E5XDzd3i8vVVHOMuykUzhQOLKfCGSoLzEBq4wojNHa8YNrMuRaOlk4ITuW8BEYEAWoslYZJzg6zu5FrAlSqjf4d4qcK4NW3EOKrgth5XVvlSl3mFgsuLeWCWmGAaMwcUO5ImZOBdTqy2hg-eps6VYU-NsP6ikoiBckFFYMLjy4dQ0rRuu1UgtXmG2pzbrU5vRq_MbScjy0-tL_Mf-xnf9ihrWolC6KoWrFCtcaxL2QOmYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919815828</pqid></control><display><type>article</type><title>Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile</title><source>IOP Publishing Free Content(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Henriksen, Mark J. ; Panda, Prajwal</creator><creatorcontrib>Henriksen, Mark J. ; Panda, Prajwal</creatorcontrib><description>We use 3D k -means clustering to characterize galaxy substructure in the A2146 cluster of galaxies ( z = 0.2343). This method objectively characterizes the cluster’s substructure using projected position and velocity data for 67 galaxies within a 2.305 Mpc circular region centered on the cluster's optical center. The optimal number of substructures is found to be four. Four distinct substructures with rms velocity typical of galaxy groups or low-mass subclusters, when compared to cosmological simulations of galaxy cluster formation, suggest that A2146 is in the early stages of formation. We utilize this disequilibrium, which is so prevalent in galaxy clusters at all redshifts, to construct a radial mass distribution. Substructures are bound but not virialized. This method is in contrast to previous kinematical analyses, which have assumed virialization, and ignored the ubiquitous clumping of galaxies. The best-fitting radial mass profile is much less centrally concentrated than the well-known Navarro–Frenk–White profile, indicating that the dark-matter-dominated mass distribution is flatter pre-equilibrium, becoming more centrally peaked in equilibrium through the merging of the substructure.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ad1ede</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Astroinformatics ; Cluster analysis ; Clustering ; Dark matter distribution ; Galactic clusters ; Galaxies ; Galaxy clusters ; Galaxy distribution ; Large-scale structure of the universe ; Machine learning ; Mass distribution ; Stars &amp; galaxies ; Vector quantization ; Velocity</subject><ispartof>Astrophysical journal. Letters, 2024-02, Vol.961 (2), p.L36</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-a6fd6fae428fd29603a9cdf6d8c0f463cd74c8f2bf884297ba3181a2de29d3943</cites><orcidid>0000-0003-0530-8736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ad1ede/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Henriksen, Mark J.</creatorcontrib><creatorcontrib>Panda, Prajwal</creatorcontrib><title>Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We use 3D k -means clustering to characterize galaxy substructure in the A2146 cluster of galaxies ( z = 0.2343). This method objectively characterizes the cluster’s substructure using projected position and velocity data for 67 galaxies within a 2.305 Mpc circular region centered on the cluster's optical center. The optimal number of substructures is found to be four. Four distinct substructures with rms velocity typical of galaxy groups or low-mass subclusters, when compared to cosmological simulations of galaxy cluster formation, suggest that A2146 is in the early stages of formation. We utilize this disequilibrium, which is so prevalent in galaxy clusters at all redshifts, to construct a radial mass distribution. Substructures are bound but not virialized. This method is in contrast to previous kinematical analyses, which have assumed virialization, and ignored the ubiquitous clumping of galaxies. The best-fitting radial mass profile is much less centrally concentrated than the well-known Navarro–Frenk–White profile, indicating that the dark-matter-dominated mass distribution is flatter pre-equilibrium, becoming more centrally peaked in equilibrium through the merging of the substructure.</description><subject>Astroinformatics</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Dark matter distribution</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Galaxy clusters</subject><subject>Galaxy distribution</subject><subject>Large-scale structure of the universe</subject><subject>Machine learning</subject><subject>Mass distribution</subject><subject>Stars &amp; galaxies</subject><subject>Vector quantization</subject><subject>Velocity</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctLxDAQxosouD7uHgOCJ9fNq93kKOv6gBU96MVLmOahKbWpSQvrf2_XynoRTzN8881vhpksOyH4ggk-n1HMyVRQwmZgiDV2J5tspd1tjvP97CClCmOKCyIm2cty3dbBd755Rfeg33xj0cpCbDYCNAZd-WQ_el_7Mvr-HfkG3UAN60-0qPvU2ZhQF9BD2cFQgQGREnqMwfnaHmV7Dupkj3_iYfZ8vXxa3E5XDzd3i8vVVHOMuykUzhQOLKfCGSoLzEBq4wojNHa8YNrMuRaOlk4ITuW8BEYEAWoslYZJzg6zu5FrAlSqjf4d4qcK4NW3EOKrgth5XVvlSl3mFgsuLeWCWmGAaMwcUO5ImZOBdTqy2hg-eps6VYU-NsP6ikoiBckFFYMLjy4dQ0rRuu1UgtXmG2pzbrU5vRq_MbScjy0-tL_Mf-xnf9ihrWolC6KoWrFCtcaxL2QOmYw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Henriksen, Mark J.</creator><creator>Panda, Prajwal</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0530-8736</orcidid></search><sort><creationdate>20240201</creationdate><title>Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile</title><author>Henriksen, Mark J. ; Panda, Prajwal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a6fd6fae428fd29603a9cdf6d8c0f463cd74c8f2bf884297ba3181a2de29d3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astroinformatics</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Dark matter distribution</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Galaxy clusters</topic><topic>Galaxy distribution</topic><topic>Large-scale structure of the universe</topic><topic>Machine learning</topic><topic>Mass distribution</topic><topic>Stars &amp; galaxies</topic><topic>Vector quantization</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henriksen, Mark J.</creatorcontrib><creatorcontrib>Panda, Prajwal</creatorcontrib><collection>IOP Publishing Free Content(OpenAccess)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henriksen, Mark J.</au><au>Panda, Prajwal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>961</volume><issue>2</issue><spage>L36</spage><pages>L36-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We use 3D k -means clustering to characterize galaxy substructure in the A2146 cluster of galaxies ( z = 0.2343). This method objectively characterizes the cluster’s substructure using projected position and velocity data for 67 galaxies within a 2.305 Mpc circular region centered on the cluster's optical center. The optimal number of substructures is found to be four. Four distinct substructures with rms velocity typical of galaxy groups or low-mass subclusters, when compared to cosmological simulations of galaxy cluster formation, suggest that A2146 is in the early stages of formation. We utilize this disequilibrium, which is so prevalent in galaxy clusters at all redshifts, to construct a radial mass distribution. Substructures are bound but not virialized. This method is in contrast to previous kinematical analyses, which have assumed virialization, and ignored the ubiquitous clumping of galaxies. The best-fitting radial mass profile is much less centrally concentrated than the well-known Navarro–Frenk–White profile, indicating that the dark-matter-dominated mass distribution is flatter pre-equilibrium, becoming more centrally peaked in equilibrium through the merging of the substructure.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ad1ede</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0530-8736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2024-02, Vol.961 (2), p.L36
issn 2041-8205
2041-8213
language eng
recordid cdi_iop_journals_10_3847_2041_8213_ad1ede
source IOP Publishing Free Content(OpenAccess); DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
subjects Astroinformatics
Cluster analysis
Clustering
Dark matter distribution
Galactic clusters
Galaxies
Galaxy clusters
Galaxy distribution
Large-scale structure of the universe
Machine learning
Mass distribution
Stars & galaxies
Vector quantization
Velocity
title Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Machine%20Learning%20and%20Disequilibrium%20in%20Galaxy%20Clusters%20to%20Obtain%20a%20Mass%20Profile&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Henriksen,%20Mark%20J.&rft.date=2024-02-01&rft.volume=961&rft.issue=2&rft.spage=L36&rft.pages=L36-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ad1ede&rft_dat=%3Cproquest_iop_j%3E2919815828%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919815828&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_fbcb5e0849e2482e8da1c03fa24f1b51&rfr_iscdi=true