A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury

Radar observations of Mercury and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft data indicate the probable existence of water ice in the permanently shadowed polar regions. Generally, water is accepted to be of exogenous origin through delivery via comets a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2020-03, Vol.891 (2), p.L43
Hauptverfasser: Jones, B. M., Sarantos, M., Orlando, T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L43
container_title Astrophysical journal. Letters
container_volume 891
creator Jones, B. M.
Sarantos, M.
Orlando, T. M.
description Radar observations of Mercury and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft data indicate the probable existence of water ice in the permanently shadowed polar regions. Generally, water is accepted to be of exogenous origin through delivery via comets and meteoritic impact. However, a continuous water formation process that involves thermal transformation of chemically stable mineral-bound hydroxyl groups produced by implanted solar-wind protons is readily available on the surface of Mercury. At typical temperatures prevailing on Mercury's dayside surface, H2O can be produced from reactions involving OH groups on or within the H-saturated regolith grain interfaces. Similar reactions will also occur due to micrometeorite impact events on both the dayside and nightside. Once produced, H2O is released into the exosphere and then transported and processed via Jeans escape, photodissociation, dissociative adsorption, or condensation. Water reaching cold traps will be bound over geological periods. This simple water cycle will produce a highly chemically reduced surface and can deliver significant amounts of H2O to the permanently shadowed regions of Mercury over geological time periods. The overall process is an important but hitherto unnoticed source term that will contribute to the accumulation of water in the cold traps and polar regions of Mercury.
doi_str_mv 10.3847/2041-8213/ab6bda
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_ab6bda</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377715778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3d9bd18af6f199eb2510b30d4738e7dd9eb3da950fd4b8ba8ae99afff1cb52213</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrd49BgRPrk02u01yLMWPQluRKh5Dsklgy7pZkw2l_96UlXoRT_OYee_NzAPgGqN7wgo6yVGBM5ZjMpFqqrQ8AaNj6_SIUXkOLkLYIpSjKWYjsJ7BtdnBRQs3dR_ha5ShzirX9nUbXQxw4xrps13d6gSjrwx0Fq5cY6qYBvBD9sZD18KV8VX0-0twZmUTzNVPHYP3x4e3-XO2fHlazGfLrCoK2mdEc6Uxk3ZqMedG5SVGiiBdUMIM1Tq1iJa8RFYXiinJpOFcWmtxpco8fTQGN4Nv591XNKEX23Rdm1aKnFBKcUkpSyw0sCrvQvDGis7Xn9LvBUbikJo4xCIOEYkhtSS5GyS16349_6Hf_kGX3bYRjGORi2VBRKct-QbRl3wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377715778</pqid></control><display><type>article</type><title>A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury</title><source>IOP Publishing Free Content</source><creator>Jones, B. M. ; Sarantos, M. ; Orlando, T. M.</creator><creatorcontrib>Jones, B. M. ; Sarantos, M. ; Orlando, T. M.</creatorcontrib><description>Radar observations of Mercury and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft data indicate the probable existence of water ice in the permanently shadowed polar regions. Generally, water is accepted to be of exogenous origin through delivery via comets and meteoritic impact. However, a continuous water formation process that involves thermal transformation of chemically stable mineral-bound hydroxyl groups produced by implanted solar-wind protons is readily available on the surface of Mercury. At typical temperatures prevailing on Mercury's dayside surface, H2O can be produced from reactions involving OH groups on or within the H-saturated regolith grain interfaces. Similar reactions will also occur due to micrometeorite impact events on both the dayside and nightside. Once produced, H2O is released into the exosphere and then transported and processed via Jeans escape, photodissociation, dissociative adsorption, or condensation. Water reaching cold traps will be bound over geological periods. This simple water cycle will produce a highly chemically reduced surface and can deliver significant amounts of H2O to the permanently shadowed regions of Mercury over geological time periods. The overall process is an important but hitherto unnoticed source term that will contribute to the accumulation of water in the cold traps and polar regions of Mercury.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab6bda</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Aerospace environments ; Astrochemistry ; Cold traps ; Comets ; Exosphere ; Geochemistry ; Geological time ; Geology ; Hydrologic cycle ; Hydroxyl groups ; Ice formation ; Impact phenomena ; Mercury ; Mercury (planet) ; Mercury surface ; MESSENGER Mission ; MESSENGER Spacecraft ; Micrometeorites ; Photodissociation ; Planetary polar regions ; Planetary science ; Polar environments ; Polar regions ; Radar ; Regolith ; Solar wind ; Solar-planetary interactions ; Spacecraft ; Thermal transformations ; Water ice</subject><ispartof>Astrophysical journal. Letters, 2020-03, Vol.891 (2), p.L43</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3d9bd18af6f199eb2510b30d4738e7dd9eb3da950fd4b8ba8ae99afff1cb52213</citedby><cites>FETCH-LOGICAL-c447t-3d9bd18af6f199eb2510b30d4738e7dd9eb3da950fd4b8ba8ae99afff1cb52213</cites><orcidid>0000-0002-6704-1064 ; 0000-0002-2422-4506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab6bda/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab6bda$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Jones, B. M.</creatorcontrib><creatorcontrib>Sarantos, M.</creatorcontrib><creatorcontrib>Orlando, T. M.</creatorcontrib><title>A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Radar observations of Mercury and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft data indicate the probable existence of water ice in the permanently shadowed polar regions. Generally, water is accepted to be of exogenous origin through delivery via comets and meteoritic impact. However, a continuous water formation process that involves thermal transformation of chemically stable mineral-bound hydroxyl groups produced by implanted solar-wind protons is readily available on the surface of Mercury. At typical temperatures prevailing on Mercury's dayside surface, H2O can be produced from reactions involving OH groups on or within the H-saturated regolith grain interfaces. Similar reactions will also occur due to micrometeorite impact events on both the dayside and nightside. Once produced, H2O is released into the exosphere and then transported and processed via Jeans escape, photodissociation, dissociative adsorption, or condensation. Water reaching cold traps will be bound over geological periods. This simple water cycle will produce a highly chemically reduced surface and can deliver significant amounts of H2O to the permanently shadowed regions of Mercury over geological time periods. The overall process is an important but hitherto unnoticed source term that will contribute to the accumulation of water in the cold traps and polar regions of Mercury.</description><subject>Aerospace environments</subject><subject>Astrochemistry</subject><subject>Cold traps</subject><subject>Comets</subject><subject>Exosphere</subject><subject>Geochemistry</subject><subject>Geological time</subject><subject>Geology</subject><subject>Hydrologic cycle</subject><subject>Hydroxyl groups</subject><subject>Ice formation</subject><subject>Impact phenomena</subject><subject>Mercury</subject><subject>Mercury (planet)</subject><subject>Mercury surface</subject><subject>MESSENGER Mission</subject><subject>MESSENGER Spacecraft</subject><subject>Micrometeorites</subject><subject>Photodissociation</subject><subject>Planetary polar regions</subject><subject>Planetary science</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>Radar</subject><subject>Regolith</subject><subject>Solar wind</subject><subject>Solar-planetary interactions</subject><subject>Spacecraft</subject><subject>Thermal transformations</subject><subject>Water ice</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrd49BgRPrk02u01yLMWPQluRKh5Dsklgy7pZkw2l_96UlXoRT_OYee_NzAPgGqN7wgo6yVGBM5ZjMpFqqrQ8AaNj6_SIUXkOLkLYIpSjKWYjsJ7BtdnBRQs3dR_ha5ShzirX9nUbXQxw4xrps13d6gSjrwx0Fq5cY6qYBvBD9sZD18KV8VX0-0twZmUTzNVPHYP3x4e3-XO2fHlazGfLrCoK2mdEc6Uxk3ZqMedG5SVGiiBdUMIM1Tq1iJa8RFYXiinJpOFcWmtxpco8fTQGN4Nv591XNKEX23Rdm1aKnFBKcUkpSyw0sCrvQvDGis7Xn9LvBUbikJo4xCIOEYkhtSS5GyS16349_6Hf_kGX3bYRjGORi2VBRKct-QbRl3wQ</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Jones, B. M.</creator><creator>Sarantos, M.</creator><creator>Orlando, T. M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6704-1064</orcidid><orcidid>https://orcid.org/0000-0002-2422-4506</orcidid></search><sort><creationdate>20200310</creationdate><title>A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury</title><author>Jones, B. M. ; Sarantos, M. ; Orlando, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3d9bd18af6f199eb2510b30d4738e7dd9eb3da950fd4b8ba8ae99afff1cb52213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace environments</topic><topic>Astrochemistry</topic><topic>Cold traps</topic><topic>Comets</topic><topic>Exosphere</topic><topic>Geochemistry</topic><topic>Geological time</topic><topic>Geology</topic><topic>Hydrologic cycle</topic><topic>Hydroxyl groups</topic><topic>Ice formation</topic><topic>Impact phenomena</topic><topic>Mercury</topic><topic>Mercury (planet)</topic><topic>Mercury surface</topic><topic>MESSENGER Mission</topic><topic>MESSENGER Spacecraft</topic><topic>Micrometeorites</topic><topic>Photodissociation</topic><topic>Planetary polar regions</topic><topic>Planetary science</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>Radar</topic><topic>Regolith</topic><topic>Solar wind</topic><topic>Solar-planetary interactions</topic><topic>Spacecraft</topic><topic>Thermal transformations</topic><topic>Water ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, B. M.</creatorcontrib><creatorcontrib>Sarantos, M.</creatorcontrib><creatorcontrib>Orlando, T. M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jones, B. M.</au><au>Sarantos, M.</au><au>Orlando, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>891</volume><issue>2</issue><spage>L43</spage><pages>L43-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Radar observations of Mercury and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft data indicate the probable existence of water ice in the permanently shadowed polar regions. Generally, water is accepted to be of exogenous origin through delivery via comets and meteoritic impact. However, a continuous water formation process that involves thermal transformation of chemically stable mineral-bound hydroxyl groups produced by implanted solar-wind protons is readily available on the surface of Mercury. At typical temperatures prevailing on Mercury's dayside surface, H2O can be produced from reactions involving OH groups on or within the H-saturated regolith grain interfaces. Similar reactions will also occur due to micrometeorite impact events on both the dayside and nightside. Once produced, H2O is released into the exosphere and then transported and processed via Jeans escape, photodissociation, dissociative adsorption, or condensation. Water reaching cold traps will be bound over geological periods. This simple water cycle will produce a highly chemically reduced surface and can deliver significant amounts of H2O to the permanently shadowed regions of Mercury over geological time periods. The overall process is an important but hitherto unnoticed source term that will contribute to the accumulation of water in the cold traps and polar regions of Mercury.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab6bda</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6704-1064</orcidid><orcidid>https://orcid.org/0000-0002-2422-4506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2020-03, Vol.891 (2), p.L43
issn 2041-8205
2041-8213
language eng
recordid cdi_iop_journals_10_3847_2041_8213_ab6bda
source IOP Publishing Free Content
subjects Aerospace environments
Astrochemistry
Cold traps
Comets
Exosphere
Geochemistry
Geological time
Geology
Hydrologic cycle
Hydroxyl groups
Ice formation
Impact phenomena
Mercury
Mercury (planet)
Mercury surface
MESSENGER Mission
MESSENGER Spacecraft
Micrometeorites
Photodissociation
Planetary polar regions
Planetary science
Polar environments
Polar regions
Radar
Regolith
Solar wind
Solar-planetary interactions
Spacecraft
Thermal transformations
Water ice
title A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20In%20Situ%20Quasi-continuous%20Solar-wind%20Source%20of%20Molecular%20Water%20on%20Mercury&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Jones,%20B.%20M.&rft.date=2020-03-10&rft.volume=891&rft.issue=2&rft.spage=L43&rft.pages=L43-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab6bda&rft_dat=%3Cproquest_O3W%3E2377715778%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377715778&rft_id=info:pmid/&rfr_iscdi=true