First Detection of Plasmoids from Breakout Reconnection on the Sun

Transient collimated plasma ejections (jets) occur frequently throughout the solar corona, in active regions, quiet Sun, and coronal holes. Although magnetic reconnection is generally agreed to be the mechanism of energy release in jets, the factors that dictate the location and rate of reconnection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2019-11, Vol.885 (1), p.L15
Hauptverfasser: Kumar, Pankaj, Karpen, Judith T., Antiochos, Spiro K., Wyper, Peter F., DeVore, C. Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L15
container_title Astrophysical journal. Letters
container_volume 885
creator Kumar, Pankaj
Karpen, Judith T.
Antiochos, Spiro K.
Wyper, Peter F.
DeVore, C. Richard
description Transient collimated plasma ejections (jets) occur frequently throughout the solar corona, in active regions, quiet Sun, and coronal holes. Although magnetic reconnection is generally agreed to be the mechanism of energy release in jets, the factors that dictate the location and rate of reconnection remain unclear. Our previous studies demonstrated that the magnetic breakout model explains the triggering and evolution of most jets over a wide range of scales, through detailed comparisons between our numerical simulations and high-resolution observations. An alternative explanation, the resistive-kink model, invokes breakout reconnection without forming and explosively expelling a flux rope. Here we report direct observations of breakout reconnection and plasmoid formation during two jets in the fan-spine topology of an embedded bipole. For the first time, we observed the formation and evolution of multiple small plasmoids with bidirectional flows associated with fast reconnection in 3D breakout current sheets (BCSs) in the solar corona. The first narrow jet was launched by reconnection at the BCS originating at the deformed 3D null, without significant flare reconnection or a filament eruption. In contrast, the second jet and release of cool filament plasma were triggered by explosive breakout reconnection when the leading edge of the rising flux rope formed by flare reconnection beneath the filament encountered the preexisting BCS. These observations solidly support both reconnection-driven jet models: the resistive kink for the first jet, and the breakout model for the second explosive jet with a filament eruption.
doi_str_mv 10.3847/2041-8213/ab45f9
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_ab45f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365685869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-7a06532cb315d8be98b0a197c088047e3aae1d3cb8b3c8973ea89ae3159049a03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7ePQYET9adNEmbHN3VVWFB8eMc0jTFrrtNTdKD_96W6noRTzMMz_sOPAidErikguWzFBhJREroTBeMV3IPTXan_d0O_BAdhbAGSCEjYoLmy9qHiK9ttCbWrsGuwo8bHbauLgOuvNviubf63XURP1njmuaHa3B8s_i5a47RQaU3wZ58zyl6Xd68LO6S1cPt_eJqlRjG8pjkGjJOU1NQwktRWCkK0ETmBoQAlluqtSUlNYUoqBEyp1YLqW1PS2BSA52is7G39e6jsyGqtet8079UKc14JrjIZE_BSBnvQvC2Uq2vt9p_KgJqMKUGFWrQokZTfeRijNSu_e38Bz__A9fteqOE4IqoFeGqLSv6BTFndeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365685869</pqid></control><display><type>article</type><title>First Detection of Plasmoids from Breakout Reconnection on the Sun</title><source>Institute of Physics Open Access Journal Titles</source><creator>Kumar, Pankaj ; Karpen, Judith T. ; Antiochos, Spiro K. ; Wyper, Peter F. ; DeVore, C. Richard</creator><creatorcontrib>Kumar, Pankaj ; Karpen, Judith T. ; Antiochos, Spiro K. ; Wyper, Peter F. ; DeVore, C. Richard</creatorcontrib><description>Transient collimated plasma ejections (jets) occur frequently throughout the solar corona, in active regions, quiet Sun, and coronal holes. Although magnetic reconnection is generally agreed to be the mechanism of energy release in jets, the factors that dictate the location and rate of reconnection remain unclear. Our previous studies demonstrated that the magnetic breakout model explains the triggering and evolution of most jets over a wide range of scales, through detailed comparisons between our numerical simulations and high-resolution observations. An alternative explanation, the resistive-kink model, invokes breakout reconnection without forming and explosively expelling a flux rope. Here we report direct observations of breakout reconnection and plasmoid formation during two jets in the fan-spine topology of an embedded bipole. For the first time, we observed the formation and evolution of multiple small plasmoids with bidirectional flows associated with fast reconnection in 3D breakout current sheets (BCSs) in the solar corona. The first narrow jet was launched by reconnection at the BCS originating at the deformed 3D null, without significant flare reconnection or a filament eruption. In contrast, the second jet and release of cool filament plasma were triggered by explosive breakout reconnection when the leading edge of the rising flux rope formed by flare reconnection beneath the filament encountered the preexisting BCS. These observations solidly support both reconnection-driven jet models: the resistive kink for the first jet, and the breakout model for the second explosive jet with a filament eruption.</description><identifier>ISSN: 2041-8205</identifier><identifier>ISSN: 2041-8213</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab45f9</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Collimation ; Computer simulation ; Corona ; Coronal holes ; Current sheets ; Eruptions ; Evolution ; Jets ; Magnetic reconnection ; Mathematical models ; Numerical simulations ; Plasmas (physics) ; Quiet Sun ; Solar corona ; Solar coronal transients ; Solar magnetic bright points ; Solar magnetic fields ; Solar magnetic reconnection ; Spine ; Topology</subject><ispartof>Astrophysical journal. Letters, 2019-11, Vol.885 (1), p.L15</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-7a06532cb315d8be98b0a197c088047e3aae1d3cb8b3c8973ea89ae3159049a03</citedby><cites>FETCH-LOGICAL-c447t-7a06532cb315d8be98b0a197c088047e3aae1d3cb8b3c8973ea89ae3159049a03</cites><orcidid>0000-0001-6289-7341 ; 0000-0002-6442-7818 ; 0000-0002-6975-5642 ; 0000-0003-0176-4312 ; 0000-0002-4668-591X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab45f9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab45f9$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Kumar, Pankaj</creatorcontrib><creatorcontrib>Karpen, Judith T.</creatorcontrib><creatorcontrib>Antiochos, Spiro K.</creatorcontrib><creatorcontrib>Wyper, Peter F.</creatorcontrib><creatorcontrib>DeVore, C. Richard</creatorcontrib><title>First Detection of Plasmoids from Breakout Reconnection on the Sun</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Transient collimated plasma ejections (jets) occur frequently throughout the solar corona, in active regions, quiet Sun, and coronal holes. Although magnetic reconnection is generally agreed to be the mechanism of energy release in jets, the factors that dictate the location and rate of reconnection remain unclear. Our previous studies demonstrated that the magnetic breakout model explains the triggering and evolution of most jets over a wide range of scales, through detailed comparisons between our numerical simulations and high-resolution observations. An alternative explanation, the resistive-kink model, invokes breakout reconnection without forming and explosively expelling a flux rope. Here we report direct observations of breakout reconnection and plasmoid formation during two jets in the fan-spine topology of an embedded bipole. For the first time, we observed the formation and evolution of multiple small plasmoids with bidirectional flows associated with fast reconnection in 3D breakout current sheets (BCSs) in the solar corona. The first narrow jet was launched by reconnection at the BCS originating at the deformed 3D null, without significant flare reconnection or a filament eruption. In contrast, the second jet and release of cool filament plasma were triggered by explosive breakout reconnection when the leading edge of the rising flux rope formed by flare reconnection beneath the filament encountered the preexisting BCS. These observations solidly support both reconnection-driven jet models: the resistive kink for the first jet, and the breakout model for the second explosive jet with a filament eruption.</description><subject>Collimation</subject><subject>Computer simulation</subject><subject>Corona</subject><subject>Coronal holes</subject><subject>Current sheets</subject><subject>Eruptions</subject><subject>Evolution</subject><subject>Jets</subject><subject>Magnetic reconnection</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Plasmas (physics)</subject><subject>Quiet Sun</subject><subject>Solar corona</subject><subject>Solar coronal transients</subject><subject>Solar magnetic bright points</subject><subject>Solar magnetic fields</subject><subject>Solar magnetic reconnection</subject><subject>Spine</subject><subject>Topology</subject><issn>2041-8205</issn><issn>2041-8213</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7ePQYET9adNEmbHN3VVWFB8eMc0jTFrrtNTdKD_96W6noRTzMMz_sOPAidErikguWzFBhJREroTBeMV3IPTXan_d0O_BAdhbAGSCEjYoLmy9qHiK9ttCbWrsGuwo8bHbauLgOuvNviubf63XURP1njmuaHa3B8s_i5a47RQaU3wZ58zyl6Xd68LO6S1cPt_eJqlRjG8pjkGjJOU1NQwktRWCkK0ETmBoQAlluqtSUlNYUoqBEyp1YLqW1PS2BSA52is7G39e6jsyGqtet8079UKc14JrjIZE_BSBnvQvC2Uq2vt9p_KgJqMKUGFWrQokZTfeRijNSu_e38Bz__A9fteqOE4IqoFeGqLSv6BTFndeQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Kumar, Pankaj</creator><creator>Karpen, Judith T.</creator><creator>Antiochos, Spiro K.</creator><creator>Wyper, Peter F.</creator><creator>DeVore, C. Richard</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6289-7341</orcidid><orcidid>https://orcid.org/0000-0002-6442-7818</orcidid><orcidid>https://orcid.org/0000-0002-6975-5642</orcidid><orcidid>https://orcid.org/0000-0003-0176-4312</orcidid><orcidid>https://orcid.org/0000-0002-4668-591X</orcidid></search><sort><creationdate>20191101</creationdate><title>First Detection of Plasmoids from Breakout Reconnection on the Sun</title><author>Kumar, Pankaj ; Karpen, Judith T. ; Antiochos, Spiro K. ; Wyper, Peter F. ; DeVore, C. Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-7a06532cb315d8be98b0a197c088047e3aae1d3cb8b3c8973ea89ae3159049a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collimation</topic><topic>Computer simulation</topic><topic>Corona</topic><topic>Coronal holes</topic><topic>Current sheets</topic><topic>Eruptions</topic><topic>Evolution</topic><topic>Jets</topic><topic>Magnetic reconnection</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Plasmas (physics)</topic><topic>Quiet Sun</topic><topic>Solar corona</topic><topic>Solar coronal transients</topic><topic>Solar magnetic bright points</topic><topic>Solar magnetic fields</topic><topic>Solar magnetic reconnection</topic><topic>Spine</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Pankaj</creatorcontrib><creatorcontrib>Karpen, Judith T.</creatorcontrib><creatorcontrib>Antiochos, Spiro K.</creatorcontrib><creatorcontrib>Wyper, Peter F.</creatorcontrib><creatorcontrib>DeVore, C. Richard</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Pankaj</au><au>Karpen, Judith T.</au><au>Antiochos, Spiro K.</au><au>Wyper, Peter F.</au><au>DeVore, C. Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Detection of Plasmoids from Breakout Reconnection on the Sun</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>885</volume><issue>1</issue><spage>L15</spage><pages>L15-</pages><issn>2041-8205</issn><issn>2041-8213</issn><eissn>2041-8213</eissn><abstract>Transient collimated plasma ejections (jets) occur frequently throughout the solar corona, in active regions, quiet Sun, and coronal holes. Although magnetic reconnection is generally agreed to be the mechanism of energy release in jets, the factors that dictate the location and rate of reconnection remain unclear. Our previous studies demonstrated that the magnetic breakout model explains the triggering and evolution of most jets over a wide range of scales, through detailed comparisons between our numerical simulations and high-resolution observations. An alternative explanation, the resistive-kink model, invokes breakout reconnection without forming and explosively expelling a flux rope. Here we report direct observations of breakout reconnection and plasmoid formation during two jets in the fan-spine topology of an embedded bipole. For the first time, we observed the formation and evolution of multiple small plasmoids with bidirectional flows associated with fast reconnection in 3D breakout current sheets (BCSs) in the solar corona. The first narrow jet was launched by reconnection at the BCS originating at the deformed 3D null, without significant flare reconnection or a filament eruption. In contrast, the second jet and release of cool filament plasma were triggered by explosive breakout reconnection when the leading edge of the rising flux rope formed by flare reconnection beneath the filament encountered the preexisting BCS. These observations solidly support both reconnection-driven jet models: the resistive kink for the first jet, and the breakout model for the second explosive jet with a filament eruption.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab45f9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6289-7341</orcidid><orcidid>https://orcid.org/0000-0002-6442-7818</orcidid><orcidid>https://orcid.org/0000-0002-6975-5642</orcidid><orcidid>https://orcid.org/0000-0003-0176-4312</orcidid><orcidid>https://orcid.org/0000-0002-4668-591X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2019-11, Vol.885 (1), p.L15
issn 2041-8205
2041-8213
2041-8213
language eng
recordid cdi_iop_journals_10_3847_2041_8213_ab45f9
source Institute of Physics Open Access Journal Titles
subjects Collimation
Computer simulation
Corona
Coronal holes
Current sheets
Eruptions
Evolution
Jets
Magnetic reconnection
Mathematical models
Numerical simulations
Plasmas (physics)
Quiet Sun
Solar corona
Solar coronal transients
Solar magnetic bright points
Solar magnetic fields
Solar magnetic reconnection
Spine
Topology
title First Detection of Plasmoids from Breakout Reconnection on the Sun
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Detection%20of%20Plasmoids%20from%20Breakout%20Reconnection%20on%20the%20Sun&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Kumar,%20Pankaj&rft.date=2019-11-01&rft.volume=885&rft.issue=1&rft.spage=L15&rft.pages=L15-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab45f9&rft_dat=%3Cproquest_O3W%3E2365685869%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365685869&rft_id=info:pmid/&rfr_iscdi=true