Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets
We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotatio...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2019-09, Vol.882 (2), p.L16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L16 |
container_title | Astrophysical journal. Letters |
container_volume | 882 |
creator | Dong, Chuanfei Huang, Zhenguang Lingam, Manasvi |
description | We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned. |
doi_str_mv | 10.3847/2041-8213/ab372c |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_ab372c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365688867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</originalsourceid><addsrcrecordid>eNp1kM1PwjAYhxejiYjePTaaeHLSj63rvBGCaILBED03XddBcayj7VT-e4cjeNHT-5Hn_eXNEwSXCN4RFiUDDCMUMozIQGQkwfIo6B1Wx4cexqfBmXMrCDGkiPWC1dyUCpgCvJSiUl7YLZhlpd402m-BrsBcLZpSeF0twNCvjauXymoJxk6KWt2DSZh_CluAD2Vd48DzfhwL65dhqd8VGH-Z-ifanQcnhSidutjXfvD2MH4dPYbT2eRpNJyGMkoiH9KMypzgTChYpGlBsxgKJtMYkxTlJJOxwGkOSUIIzRPKlKRCRipBLI_bnkSkH1x1ucZ5zZ3UXsmlNFWlpOeIRqxV0ULXHVRbs2mU83xlGlu1f3FMaEwZYzRpKdhR0hrnrCp4bfW6lcQR5DvtfOeV7xzzTnt7ctOdaFP_Zop6VXLGMMd8iiiv86IFb_8A_839BhkbkIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365688867</pqid></control><display><type>article</type><title>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</title><source>IOP Publishing Free Content</source><creator>Dong, Chuanfei ; Huang, Zhenguang ; Lingam, Manasvi</creator><creatorcontrib>Dong, Chuanfei ; Huang, Zhenguang ; Lingam, Manasvi ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.</description><identifier>ISSN: 2041-8205</identifier><identifier>ISSN: 2041-8213</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab372c</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Astrobiology ; ASTRONOMY AND ASTROPHYSICS ; Atmospheric chemistry ; Axes of rotation ; Circumstellar habitable zone ; Computational fluid dynamics ; Computer simulation ; Earth rotation ; Exoplanet atmospheres ; Extrasolar planets ; Fluid flow ; Habitability ; Habitable planets ; Magnetic fields ; Magnetohydrodynamical simulations ; Magnetohydrodynamics ; Obliquity ; Organic chemistry ; Oxygen ; Oxygen ions ; Planetary orbits ; Red dwarf stars ; Stellar winds</subject><ispartof>Astrophysical journal. Letters, 2019-09, Vol.882 (2), p.L16</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</citedby><cites>FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</cites><orcidid>0000-0003-1674-0647 ; 0000-0002-8990-094X ; 0000-0002-2685-9417 ; 0000000316740647 ; 000000028990094X ; 0000000226859417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab372c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab372c$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1648041$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chuanfei</creatorcontrib><creatorcontrib>Huang, Zhenguang</creatorcontrib><creatorcontrib>Lingam, Manasvi</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.</description><subject>Astrobiology</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Atmospheric chemistry</subject><subject>Axes of rotation</subject><subject>Circumstellar habitable zone</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth rotation</subject><subject>Exoplanet atmospheres</subject><subject>Extrasolar planets</subject><subject>Fluid flow</subject><subject>Habitability</subject><subject>Habitable planets</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamical simulations</subject><subject>Magnetohydrodynamics</subject><subject>Obliquity</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Oxygen ions</subject><subject>Planetary orbits</subject><subject>Red dwarf stars</subject><subject>Stellar winds</subject><issn>2041-8205</issn><issn>2041-8213</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwjAYhxejiYjePTaaeHLSj63rvBGCaILBED03XddBcayj7VT-e4cjeNHT-5Hn_eXNEwSXCN4RFiUDDCMUMozIQGQkwfIo6B1Wx4cexqfBmXMrCDGkiPWC1dyUCpgCvJSiUl7YLZhlpd402m-BrsBcLZpSeF0twNCvjauXymoJxk6KWt2DSZh_CluAD2Vd48DzfhwL65dhqd8VGH-Z-ifanQcnhSidutjXfvD2MH4dPYbT2eRpNJyGMkoiH9KMypzgTChYpGlBsxgKJtMYkxTlJJOxwGkOSUIIzRPKlKRCRipBLI_bnkSkH1x1ucZ5zZ3UXsmlNFWlpOeIRqxV0ULXHVRbs2mU83xlGlu1f3FMaEwZYzRpKdhR0hrnrCp4bfW6lcQR5DvtfOeV7xzzTnt7ctOdaFP_Zop6VXLGMMd8iiiv86IFb_8A_839BhkbkIg</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Dong, Chuanfei</creator><creator>Huang, Zhenguang</creator><creator>Lingam, Manasvi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1674-0647</orcidid><orcidid>https://orcid.org/0000-0002-8990-094X</orcidid><orcidid>https://orcid.org/0000-0002-2685-9417</orcidid><orcidid>https://orcid.org/0000000316740647</orcidid><orcidid>https://orcid.org/000000028990094X</orcidid><orcidid>https://orcid.org/0000000226859417</orcidid></search><sort><creationdate>20190910</creationdate><title>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</title><author>Dong, Chuanfei ; Huang, Zhenguang ; Lingam, Manasvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrobiology</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Atmospheric chemistry</topic><topic>Axes of rotation</topic><topic>Circumstellar habitable zone</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth rotation</topic><topic>Exoplanet atmospheres</topic><topic>Extrasolar planets</topic><topic>Fluid flow</topic><topic>Habitability</topic><topic>Habitable planets</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamical simulations</topic><topic>Magnetohydrodynamics</topic><topic>Obliquity</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Oxygen ions</topic><topic>Planetary orbits</topic><topic>Red dwarf stars</topic><topic>Stellar winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chuanfei</creatorcontrib><creatorcontrib>Huang, Zhenguang</creatorcontrib><creatorcontrib>Lingam, Manasvi</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Chuanfei</au><au>Huang, Zhenguang</au><au>Lingam, Manasvi</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2019-09-10</date><risdate>2019</risdate><volume>882</volume><issue>2</issue><spage>L16</spage><pages>L16-</pages><issn>2041-8205</issn><issn>2041-8213</issn><eissn>2041-8213</eissn><abstract>We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab372c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1674-0647</orcidid><orcidid>https://orcid.org/0000-0002-8990-094X</orcidid><orcidid>https://orcid.org/0000-0002-2685-9417</orcidid><orcidid>https://orcid.org/0000000316740647</orcidid><orcidid>https://orcid.org/000000028990094X</orcidid><orcidid>https://orcid.org/0000000226859417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2019-09, Vol.882 (2), p.L16 |
issn | 2041-8205 2041-8213 2041-8213 |
language | eng |
recordid | cdi_iop_journals_10_3847_2041_8213_ab372c |
source | IOP Publishing Free Content |
subjects | Astrobiology ASTRONOMY AND ASTROPHYSICS Atmospheric chemistry Axes of rotation Circumstellar habitable zone Computational fluid dynamics Computer simulation Earth rotation Exoplanet atmospheres Extrasolar planets Fluid flow Habitability Habitable planets Magnetic fields Magnetohydrodynamical simulations Magnetohydrodynamics Obliquity Organic chemistry Oxygen Oxygen ions Planetary orbits Red dwarf stars Stellar winds |
title | Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Planetary%20Obliquity%20in%20Regulating%20Atmospheric%20Escape:%20G-dwarf%20versus%20M-dwarf%20Earth-like%20Exoplanets&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Dong,%20Chuanfei&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2019-09-10&rft.volume=882&rft.issue=2&rft.spage=L16&rft.pages=L16-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab372c&rft_dat=%3Cproquest_O3W%3E2365688867%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365688867&rft_id=info:pmid/&rfr_iscdi=true |