Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets

We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2019-09, Vol.882 (2), p.L16
Hauptverfasser: Dong, Chuanfei, Huang, Zhenguang, Lingam, Manasvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L16
container_title Astrophysical journal. Letters
container_volume 882
creator Dong, Chuanfei
Huang, Zhenguang
Lingam, Manasvi
description We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.
doi_str_mv 10.3847/2041-8213/ab372c
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_ab372c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365688867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</originalsourceid><addsrcrecordid>eNp1kM1PwjAYhxejiYjePTaaeHLSj63rvBGCaILBED03XddBcayj7VT-e4cjeNHT-5Hn_eXNEwSXCN4RFiUDDCMUMozIQGQkwfIo6B1Wx4cexqfBmXMrCDGkiPWC1dyUCpgCvJSiUl7YLZhlpd402m-BrsBcLZpSeF0twNCvjauXymoJxk6KWt2DSZh_CluAD2Vd48DzfhwL65dhqd8VGH-Z-ifanQcnhSidutjXfvD2MH4dPYbT2eRpNJyGMkoiH9KMypzgTChYpGlBsxgKJtMYkxTlJJOxwGkOSUIIzRPKlKRCRipBLI_bnkSkH1x1ucZ5zZ3UXsmlNFWlpOeIRqxV0ULXHVRbs2mU83xlGlu1f3FMaEwZYzRpKdhR0hrnrCp4bfW6lcQR5DvtfOeV7xzzTnt7ctOdaFP_Zop6VXLGMMd8iiiv86IFb_8A_839BhkbkIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365688867</pqid></control><display><type>article</type><title>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</title><source>IOP Publishing Free Content</source><creator>Dong, Chuanfei ; Huang, Zhenguang ; Lingam, Manasvi</creator><creatorcontrib>Dong, Chuanfei ; Huang, Zhenguang ; Lingam, Manasvi ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.</description><identifier>ISSN: 2041-8205</identifier><identifier>ISSN: 2041-8213</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab372c</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Astrobiology ; ASTRONOMY AND ASTROPHYSICS ; Atmospheric chemistry ; Axes of rotation ; Circumstellar habitable zone ; Computational fluid dynamics ; Computer simulation ; Earth rotation ; Exoplanet atmospheres ; Extrasolar planets ; Fluid flow ; Habitability ; Habitable planets ; Magnetic fields ; Magnetohydrodynamical simulations ; Magnetohydrodynamics ; Obliquity ; Organic chemistry ; Oxygen ; Oxygen ions ; Planetary orbits ; Red dwarf stars ; Stellar winds</subject><ispartof>Astrophysical journal. Letters, 2019-09, Vol.882 (2), p.L16</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</citedby><cites>FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</cites><orcidid>0000-0003-1674-0647 ; 0000-0002-8990-094X ; 0000-0002-2685-9417 ; 0000000316740647 ; 000000028990094X ; 0000000226859417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab372c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab372c$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1648041$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chuanfei</creatorcontrib><creatorcontrib>Huang, Zhenguang</creatorcontrib><creatorcontrib>Lingam, Manasvi</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.</description><subject>Astrobiology</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Atmospheric chemistry</subject><subject>Axes of rotation</subject><subject>Circumstellar habitable zone</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth rotation</subject><subject>Exoplanet atmospheres</subject><subject>Extrasolar planets</subject><subject>Fluid flow</subject><subject>Habitability</subject><subject>Habitable planets</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamical simulations</subject><subject>Magnetohydrodynamics</subject><subject>Obliquity</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Oxygen ions</subject><subject>Planetary orbits</subject><subject>Red dwarf stars</subject><subject>Stellar winds</subject><issn>2041-8205</issn><issn>2041-8213</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwjAYhxejiYjePTaaeHLSj63rvBGCaILBED03XddBcayj7VT-e4cjeNHT-5Hn_eXNEwSXCN4RFiUDDCMUMozIQGQkwfIo6B1Wx4cexqfBmXMrCDGkiPWC1dyUCpgCvJSiUl7YLZhlpd402m-BrsBcLZpSeF0twNCvjauXymoJxk6KWt2DSZh_CluAD2Vd48DzfhwL65dhqd8VGH-Z-ifanQcnhSidutjXfvD2MH4dPYbT2eRpNJyGMkoiH9KMypzgTChYpGlBsxgKJtMYkxTlJJOxwGkOSUIIzRPKlKRCRipBLI_bnkSkH1x1ucZ5zZ3UXsmlNFWlpOeIRqxV0ULXHVRbs2mU83xlGlu1f3FMaEwZYzRpKdhR0hrnrCp4bfW6lcQR5DvtfOeV7xzzTnt7ctOdaFP_Zop6VXLGMMd8iiiv86IFb_8A_839BhkbkIg</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Dong, Chuanfei</creator><creator>Huang, Zhenguang</creator><creator>Lingam, Manasvi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1674-0647</orcidid><orcidid>https://orcid.org/0000-0002-8990-094X</orcidid><orcidid>https://orcid.org/0000-0002-2685-9417</orcidid><orcidid>https://orcid.org/0000000316740647</orcidid><orcidid>https://orcid.org/000000028990094X</orcidid><orcidid>https://orcid.org/0000000226859417</orcidid></search><sort><creationdate>20190910</creationdate><title>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</title><author>Dong, Chuanfei ; Huang, Zhenguang ; Lingam, Manasvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6b6cd32bae0f99f6b50a8c952391d3bc5a29d037336d768ec6ac4e718d5ec6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrobiology</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Atmospheric chemistry</topic><topic>Axes of rotation</topic><topic>Circumstellar habitable zone</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth rotation</topic><topic>Exoplanet atmospheres</topic><topic>Extrasolar planets</topic><topic>Fluid flow</topic><topic>Habitability</topic><topic>Habitable planets</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamical simulations</topic><topic>Magnetohydrodynamics</topic><topic>Obliquity</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Oxygen ions</topic><topic>Planetary orbits</topic><topic>Red dwarf stars</topic><topic>Stellar winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chuanfei</creatorcontrib><creatorcontrib>Huang, Zhenguang</creatorcontrib><creatorcontrib>Lingam, Manasvi</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Chuanfei</au><au>Huang, Zhenguang</au><au>Lingam, Manasvi</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2019-09-10</date><risdate>2019</risdate><volume>882</volume><issue>2</issue><spage>L16</spage><pages>L16-</pages><issn>2041-8205</issn><issn>2041-8213</issn><eissn>2041-8213</eissn><abstract>We present a three-species (H+, O+ and e−) multi-fluid magnetohydrodynamic model, endowed with the requisite upper-atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from "Earth-like" exoplanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between 2.19 × 1026 s−1 to 2.37 × 1026 s−1. In contrast, the obliquity can influence the atmospheric escape rate (∼1028 s−1) by more than a factor of 2 (or 200%) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab372c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1674-0647</orcidid><orcidid>https://orcid.org/0000-0002-8990-094X</orcidid><orcidid>https://orcid.org/0000-0002-2685-9417</orcidid><orcidid>https://orcid.org/0000000316740647</orcidid><orcidid>https://orcid.org/000000028990094X</orcidid><orcidid>https://orcid.org/0000000226859417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2019-09, Vol.882 (2), p.L16
issn 2041-8205
2041-8213
2041-8213
language eng
recordid cdi_iop_journals_10_3847_2041_8213_ab372c
source IOP Publishing Free Content
subjects Astrobiology
ASTRONOMY AND ASTROPHYSICS
Atmospheric chemistry
Axes of rotation
Circumstellar habitable zone
Computational fluid dynamics
Computer simulation
Earth rotation
Exoplanet atmospheres
Extrasolar planets
Fluid flow
Habitability
Habitable planets
Magnetic fields
Magnetohydrodynamical simulations
Magnetohydrodynamics
Obliquity
Organic chemistry
Oxygen
Oxygen ions
Planetary orbits
Red dwarf stars
Stellar winds
title Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Planetary%20Obliquity%20in%20Regulating%20Atmospheric%20Escape:%20G-dwarf%20versus%20M-dwarf%20Earth-like%20Exoplanets&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Dong,%20Chuanfei&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2019-09-10&rft.volume=882&rft.issue=2&rft.spage=L16&rft.pages=L16-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab372c&rft_dat=%3Cproquest_O3W%3E2365688867%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365688867&rft_id=info:pmid/&rfr_iscdi=true