Energy Partition between Ion and Electron of Collisionless Magnetic Reconnection

The plasma heating during collisionless magnetic reconnection is investigated using particle-in-cell simulations. We analyze the time evolution of the plasma temperature associated with the motion of the reconnecting flux tube, where the plasma temperature is defined as the second-order moment of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2018-12, Vol.868 (2), p.L18
1. Verfasser: Hoshino, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The plasma heating during collisionless magnetic reconnection is investigated using particle-in-cell simulations. We analyze the time evolution of the plasma temperature associated with the motion of the reconnecting flux tube, where the plasma temperature is defined as the second-order moment of the velocity distribution function in the simulation frame/in the center of the flux tube frame, and we show that the plasma heating during magnetic reconnection can be separated into two distinct stages: the nonadiabatic heating stage, in which the magnetic field lines are just reconnecting in the X-type diffusion region, and the adiabatic heating stage, in which the flux tube is shrinking after two flux tubes merge. During the adiabatic heating stage, the plasma temperature T can be approximated by TVγ−1 = const., where γ = 5/3 is the specific heat, and V is the volume of the flux tube. In the nonadiabatic heating stage, we found numerically that the ratio of the increment of the ion temperature to that of the electron temperature can be approximated by , where mi and me are the ion and electron masses, respectively. We also present a theoretical model based on a magnetic-diffusion-dominated reconnection to explain the simulation result.
ISSN:2041-8205
2041-8213
DOI:10.3847/2041-8213/aaef3a