Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star
We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2018-11, Vol.867 (2), p.L28 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L28 |
container_title | Astrophysical journal. Letters |
container_volume | 867 |
creator | Fragile, P. Chris Ballantyne, David R. Maccarone, Thomas J. Witry, Jason W. L. |
description | We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood. |
doi_str_mv | 10.3847/2041-8213/aaeb99 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_aaeb99</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365632015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoOKfvPgYEn6zLR9Omj3N-DYaCm-BbSNPEdWuXmqQP--9tqcwX8ele7vmdc-EAcInRLeVxOiEoxhEnmE6k1HmWHYHR4XR82BE7BWfebxAiKMF8BOSyrNtKhnL3CcNaw5mtKtl4Da2BEq7WpdrCqVJOh9Lu4H3pt7BoNQy2V_eNhnP4Eb3JPbxrnQ_QOFt3yotug-v4ZZDuHJwYWXl98TPH4P3xYTV7jhavT_PZdBEpynGIeE5SbgqFmWQqMzRjudRMKm4MJoqYtNB5ahCLC1XoIsNJ3KlZQnMSmzjlGR2DqyG3cfar1T6IjW3drnspCE1YQgnCrKPQQClnvXfaiMaVtXR7gZHoixR9U6JvTQxFdpabwVLa5jfzH_z6D1w2m0rwpOPFgnDRFIZ-A_2BgS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365632015</pqid></control><display><type>article</type><title>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</title><source>IOP Publishing Free Content</source><creator>Fragile, P. Chris ; Ballantyne, David R. ; Maccarone, Thomas J. ; Witry, Jason W. L.</creator><creatorcontrib>Fragile, P. Chris ; Ballantyne, David R. ; Maccarone, Thomas J. ; Witry, Jason W. L.</creatorcontrib><description>We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aaeb99</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Accretion disks ; accretion, accretion disks ; Cooling ; Cooling effects ; Corona ; Equations of state ; Luminosity ; Neutron stars ; Neutrons ; Radiation ; Rotating disks ; Scale height ; Simulation ; Spectra ; stars: neutron ; Stellar rotation ; X-ray bursts ; X-rays: binaries ; X-rays: bursts</subject><ispartof>Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L28</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</citedby><cites>FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</cites><orcidid>0000-0002-5786-186X ; 0000-0001-8128-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb99/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb99$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Ballantyne, David R.</creatorcontrib><creatorcontrib>Maccarone, Thomas J.</creatorcontrib><creatorcontrib>Witry, Jason W. L.</creatorcontrib><title>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.</description><subject>Accretion disks</subject><subject>accretion, accretion disks</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Corona</subject><subject>Equations of state</subject><subject>Luminosity</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Radiation</subject><subject>Rotating disks</subject><subject>Scale height</subject><subject>Simulation</subject><subject>Spectra</subject><subject>stars: neutron</subject><subject>Stellar rotation</subject><subject>X-ray bursts</subject><subject>X-rays: binaries</subject><subject>X-rays: bursts</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYMoOKfvPgYEn6zLR9Omj3N-DYaCm-BbSNPEdWuXmqQP--9tqcwX8ele7vmdc-EAcInRLeVxOiEoxhEnmE6k1HmWHYHR4XR82BE7BWfebxAiKMF8BOSyrNtKhnL3CcNaw5mtKtl4Da2BEq7WpdrCqVJOh9Lu4H3pt7BoNQy2V_eNhnP4Eb3JPbxrnQ_QOFt3yotug-v4ZZDuHJwYWXl98TPH4P3xYTV7jhavT_PZdBEpynGIeE5SbgqFmWQqMzRjudRMKm4MJoqYtNB5ahCLC1XoIsNJ3KlZQnMSmzjlGR2DqyG3cfar1T6IjW3drnspCE1YQgnCrKPQQClnvXfaiMaVtXR7gZHoixR9U6JvTQxFdpabwVLa5jfzH_z6D1w2m0rwpOPFgnDRFIZ-A_2BgS4</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Fragile, P. Chris</creator><creator>Ballantyne, David R.</creator><creator>Maccarone, Thomas J.</creator><creator>Witry, Jason W. L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5786-186X</orcidid><orcidid>https://orcid.org/0000-0001-8128-6976</orcidid></search><sort><creationdate>20181110</creationdate><title>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</title><author>Fragile, P. Chris ; Ballantyne, David R. ; Maccarone, Thomas J. ; Witry, Jason W. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>accretion, accretion disks</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Corona</topic><topic>Equations of state</topic><topic>Luminosity</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Radiation</topic><topic>Rotating disks</topic><topic>Scale height</topic><topic>Simulation</topic><topic>Spectra</topic><topic>stars: neutron</topic><topic>Stellar rotation</topic><topic>X-ray bursts</topic><topic>X-rays: binaries</topic><topic>X-rays: bursts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Ballantyne, David R.</creatorcontrib><creatorcontrib>Maccarone, Thomas J.</creatorcontrib><creatorcontrib>Witry, Jason W. L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fragile, P. Chris</au><au>Ballantyne, David R.</au><au>Maccarone, Thomas J.</au><au>Witry, Jason W. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2018-11-10</date><risdate>2018</risdate><volume>867</volume><issue>2</issue><spage>L28</spage><pages>L28-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aaeb99</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5786-186X</orcidid><orcidid>https://orcid.org/0000-0001-8128-6976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L28 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_iop_journals_10_3847_2041_8213_aaeb99 |
source | IOP Publishing Free Content |
subjects | Accretion disks accretion, accretion disks Cooling Cooling effects Corona Equations of state Luminosity Neutron stars Neutrons Radiation Rotating disks Scale height Simulation Spectra stars: neutron Stellar rotation X-ray bursts X-rays: binaries X-rays: bursts |
title | Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20the%20Collapse%20of%20a%20Thick%20Accretion%20Disk%20due%20to%20a%20Type%20I%20X-Ray%20Burst%20from%20a%20Neutron%20Star&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Fragile,%20P.%20Chris&rft.date=2018-11-10&rft.volume=867&rft.issue=2&rft.spage=L28&rft.pages=L28-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aaeb99&rft_dat=%3Cproquest_O3W%3E2365632015%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365632015&rft_id=info:pmid/&rfr_iscdi=true |