Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star

We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2018-11, Vol.867 (2), p.L28
Hauptverfasser: Fragile, P. Chris, Ballantyne, David R., Maccarone, Thomas J., Witry, Jason W. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L28
container_title Astrophysical journal. Letters
container_volume 867
creator Fragile, P. Chris
Ballantyne, David R.
Maccarone, Thomas J.
Witry, Jason W. L.
description We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.
doi_str_mv 10.3847/2041-8213/aaeb99
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_aaeb99</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365632015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoOKfvPgYEn6zLR9Omj3N-DYaCm-BbSNPEdWuXmqQP--9tqcwX8ele7vmdc-EAcInRLeVxOiEoxhEnmE6k1HmWHYHR4XR82BE7BWfebxAiKMF8BOSyrNtKhnL3CcNaw5mtKtl4Da2BEq7WpdrCqVJOh9Lu4H3pt7BoNQy2V_eNhnP4Eb3JPbxrnQ_QOFt3yotug-v4ZZDuHJwYWXl98TPH4P3xYTV7jhavT_PZdBEpynGIeE5SbgqFmWQqMzRjudRMKm4MJoqYtNB5ahCLC1XoIsNJ3KlZQnMSmzjlGR2DqyG3cfar1T6IjW3drnspCE1YQgnCrKPQQClnvXfaiMaVtXR7gZHoixR9U6JvTQxFdpabwVLa5jfzH_z6D1w2m0rwpOPFgnDRFIZ-A_2BgS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365632015</pqid></control><display><type>article</type><title>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</title><source>IOP Publishing Free Content</source><creator>Fragile, P. Chris ; Ballantyne, David R. ; Maccarone, Thomas J. ; Witry, Jason W. L.</creator><creatorcontrib>Fragile, P. Chris ; Ballantyne, David R. ; Maccarone, Thomas J. ; Witry, Jason W. L.</creatorcontrib><description>We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aaeb99</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Accretion disks ; accretion, accretion disks ; Cooling ; Cooling effects ; Corona ; Equations of state ; Luminosity ; Neutron stars ; Neutrons ; Radiation ; Rotating disks ; Scale height ; Simulation ; Spectra ; stars: neutron ; Stellar rotation ; X-ray bursts ; X-rays: binaries ; X-rays: bursts</subject><ispartof>Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L28</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</citedby><cites>FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</cites><orcidid>0000-0002-5786-186X ; 0000-0001-8128-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb99/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb99$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Ballantyne, David R.</creatorcontrib><creatorcontrib>Maccarone, Thomas J.</creatorcontrib><creatorcontrib>Witry, Jason W. L.</creatorcontrib><title>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.</description><subject>Accretion disks</subject><subject>accretion, accretion disks</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Corona</subject><subject>Equations of state</subject><subject>Luminosity</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Radiation</subject><subject>Rotating disks</subject><subject>Scale height</subject><subject>Simulation</subject><subject>Spectra</subject><subject>stars: neutron</subject><subject>Stellar rotation</subject><subject>X-ray bursts</subject><subject>X-rays: binaries</subject><subject>X-rays: bursts</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYMoOKfvPgYEn6zLR9Omj3N-DYaCm-BbSNPEdWuXmqQP--9tqcwX8ele7vmdc-EAcInRLeVxOiEoxhEnmE6k1HmWHYHR4XR82BE7BWfebxAiKMF8BOSyrNtKhnL3CcNaw5mtKtl4Da2BEq7WpdrCqVJOh9Lu4H3pt7BoNQy2V_eNhnP4Eb3JPbxrnQ_QOFt3yotug-v4ZZDuHJwYWXl98TPH4P3xYTV7jhavT_PZdBEpynGIeE5SbgqFmWQqMzRjudRMKm4MJoqYtNB5ahCLC1XoIsNJ3KlZQnMSmzjlGR2DqyG3cfar1T6IjW3drnspCE1YQgnCrKPQQClnvXfaiMaVtXR7gZHoixR9U6JvTQxFdpabwVLa5jfzH_z6D1w2m0rwpOPFgnDRFIZ-A_2BgS4</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Fragile, P. Chris</creator><creator>Ballantyne, David R.</creator><creator>Maccarone, Thomas J.</creator><creator>Witry, Jason W. L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5786-186X</orcidid><orcidid>https://orcid.org/0000-0001-8128-6976</orcidid></search><sort><creationdate>20181110</creationdate><title>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</title><author>Fragile, P. Chris ; Ballantyne, David R. ; Maccarone, Thomas J. ; Witry, Jason W. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-8b278fdc15a5c9f395bae5ac8ff12c2f7deb7f054dcded9164e5a963b24f47893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>accretion, accretion disks</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Corona</topic><topic>Equations of state</topic><topic>Luminosity</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Radiation</topic><topic>Rotating disks</topic><topic>Scale height</topic><topic>Simulation</topic><topic>Spectra</topic><topic>stars: neutron</topic><topic>Stellar rotation</topic><topic>X-ray bursts</topic><topic>X-rays: binaries</topic><topic>X-rays: bursts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fragile, P. Chris</creatorcontrib><creatorcontrib>Ballantyne, David R.</creatorcontrib><creatorcontrib>Maccarone, Thomas J.</creatorcontrib><creatorcontrib>Witry, Jason W. L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fragile, P. Chris</au><au>Ballantyne, David R.</au><au>Maccarone, Thomas J.</au><au>Witry, Jason W. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2018-11-10</date><risdate>2018</risdate><volume>867</volume><issue>2</issue><spage>L28</spage><pages>L28-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst that rises to a peak luminosity of 1038 erg s−1 in 2.05 s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of ∼3-4 compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aaeb99</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5786-186X</orcidid><orcidid>https://orcid.org/0000-0001-8128-6976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L28
issn 2041-8205
2041-8213
language eng
recordid cdi_iop_journals_10_3847_2041_8213_aaeb99
source IOP Publishing Free Content
subjects Accretion disks
accretion, accretion disks
Cooling
Cooling effects
Corona
Equations of state
Luminosity
Neutron stars
Neutrons
Radiation
Rotating disks
Scale height
Simulation
Spectra
stars: neutron
Stellar rotation
X-ray bursts
X-rays: binaries
X-rays: bursts
title Simulating the Collapse of a Thick Accretion Disk due to a Type I X-Ray Burst from a Neutron Star
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20the%20Collapse%20of%20a%20Thick%20Accretion%20Disk%20due%20to%20a%20Type%20I%20X-Ray%20Burst%20from%20a%20Neutron%20Star&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Fragile,%20P.%20Chris&rft.date=2018-11-10&rft.volume=867&rft.issue=2&rft.spage=L28&rft.pages=L28-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aaeb99&rft_dat=%3Cproquest_O3W%3E2365632015%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365632015&rft_id=info:pmid/&rfr_iscdi=true