Making the Planetary Material Diversity during the Early Assembling of the Solar System
Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes i...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2018-11, Vol.867 (2), p.L23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L23 |
container_title | Astrophysical journal. Letters |
container_volume | 867 |
creator | Pignatale, Francesco C. Charnoz, Sébastien Chaussidon, Marc Jacquet, Emmanuel |
description | Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites. |
doi_str_mv | 10.3847/2041-8213/aaeb22 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_aaeb22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365654431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</originalsourceid><addsrcrecordid>eNp9kM9LwzAcxYMoOKd3jwXBg1iXX03a45jTCR0KG3gMaZu6zKytSTvof29rdV7E0_vy-LzHlwfAJYJ3JKR8giFFfogRmUipEoyPwOhgHR9uGJyCM-e2EGLIUDgCr0v5ros3r94o78XIQtXStt5S1spqabx7vVfW6br1ssb-cHNpTetNnVO7xPRmmX_5q9JI661aV6vdOTjJpXHq4lvHYP0wX88Wfvz8-DSbxn5KQ1z7PIlYHqSc8gRBxFSecYKhTNIsYkglCGcooIimJOiUc6JCqniIIoIgzxEiY3Az1G6kEZXVu-57UUotFtNY6MI1AuIIwggG-x6-GuDKlh-NcrXYlo0tuvcEJixgAaWkp-BApbZ0zqr80Iug6KcW_Zai31UMU3eR2yGiy-q38x_8-g9cVlsjQtbxIsZEVFlOPgGsoYr0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365654431</pqid></control><display><type>article</type><title>Making the Planetary Material Diversity during the Early Assembling of the Solar System</title><source>IOP Publishing Free Content</source><creator>Pignatale, Francesco C. ; Charnoz, Sébastien ; Chaussidon, Marc ; Jacquet, Emmanuel</creator><creatorcontrib>Pignatale, Francesco C. ; Charnoz, Sébastien ; Chaussidon, Marc ; Jacquet, Emmanuel</creatorcontrib><description>Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aaeb22</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Accretion disks ; Astrophysics ; Chemical reactions ; Chondrites ; High temperature ; Inclusions ; Low temperature ; Meteorites ; meteorites, meteors, meteoroids ; Nebulae ; One dimensional models ; Organic chemistry ; Planet formation ; protoplanetary disks ; Refractory materials ; Sciences of the Universe ; Solar nebula ; Solar system ; stars: formation ; Sun ; Terrestrial planets ; Transport processes ; Vaporization</subject><ispartof>Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L23</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 10, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</citedby><cites>FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</cites><orcidid>0000-0003-0902-7421 ; 0000-0002-7442-491X ; 0000-0001-8475-0690 ; 0000-0001-5971-6271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb22/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb22$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-02900905$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><title>Making the Planetary Material Diversity during the Early Assembling of the Solar System</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites.</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Chemical reactions</subject><subject>Chondrites</subject><subject>High temperature</subject><subject>Inclusions</subject><subject>Low temperature</subject><subject>Meteorites</subject><subject>meteorites, meteors, meteoroids</subject><subject>Nebulae</subject><subject>One dimensional models</subject><subject>Organic chemistry</subject><subject>Planet formation</subject><subject>protoplanetary disks</subject><subject>Refractory materials</subject><subject>Sciences of the Universe</subject><subject>Solar nebula</subject><subject>Solar system</subject><subject>stars: formation</subject><subject>Sun</subject><subject>Terrestrial planets</subject><subject>Transport processes</subject><subject>Vaporization</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAcxYMoOKd3jwXBg1iXX03a45jTCR0KG3gMaZu6zKytSTvof29rdV7E0_vy-LzHlwfAJYJ3JKR8giFFfogRmUipEoyPwOhgHR9uGJyCM-e2EGLIUDgCr0v5ros3r94o78XIQtXStt5S1spqabx7vVfW6br1ssb-cHNpTetNnVO7xPRmmX_5q9JI661aV6vdOTjJpXHq4lvHYP0wX88Wfvz8-DSbxn5KQ1z7PIlYHqSc8gRBxFSecYKhTNIsYkglCGcooIimJOiUc6JCqniIIoIgzxEiY3Az1G6kEZXVu-57UUotFtNY6MI1AuIIwggG-x6-GuDKlh-NcrXYlo0tuvcEJixgAaWkp-BApbZ0zqr80Iug6KcW_Zai31UMU3eR2yGiy-q38x_8-g9cVlsjQtbxIsZEVFlOPgGsoYr0</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Pignatale, Francesco C.</creator><creator>Charnoz, Sébastien</creator><creator>Chaussidon, Marc</creator><creator>Jacquet, Emmanuel</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Bristol : IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid></search><sort><creationdate>20181110</creationdate><title>Making the Planetary Material Diversity during the Early Assembling of the Solar System</title><author>Pignatale, Francesco C. ; Charnoz, Sébastien ; Chaussidon, Marc ; Jacquet, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Chemical reactions</topic><topic>Chondrites</topic><topic>High temperature</topic><topic>Inclusions</topic><topic>Low temperature</topic><topic>Meteorites</topic><topic>meteorites, meteors, meteoroids</topic><topic>Nebulae</topic><topic>One dimensional models</topic><topic>Organic chemistry</topic><topic>Planet formation</topic><topic>protoplanetary disks</topic><topic>Refractory materials</topic><topic>Sciences of the Universe</topic><topic>Solar nebula</topic><topic>Solar system</topic><topic>stars: formation</topic><topic>Sun</topic><topic>Terrestrial planets</topic><topic>Transport processes</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pignatale, Francesco C.</au><au>Charnoz, Sébastien</au><au>Chaussidon, Marc</au><au>Jacquet, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making the Planetary Material Diversity during the Early Assembling of the Solar System</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2018-11-10</date><risdate>2018</risdate><volume>867</volume><issue>2</issue><spage>L23</spage><pages>L23-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aaeb22</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L23 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_iop_journals_10_3847_2041_8213_aaeb22 |
source | IOP Publishing Free Content |
subjects | Accretion disks Astrophysics Chemical reactions Chondrites High temperature Inclusions Low temperature Meteorites meteorites, meteors, meteoroids Nebulae One dimensional models Organic chemistry Planet formation protoplanetary disks Refractory materials Sciences of the Universe Solar nebula Solar system stars: formation Sun Terrestrial planets Transport processes Vaporization |
title | Making the Planetary Material Diversity during the Early Assembling of the Solar System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20the%20Planetary%20Material%20Diversity%20during%20the%20Early%20Assembling%20of%20the%20Solar%20System&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Pignatale,%20Francesco%20C.&rft.date=2018-11-10&rft.volume=867&rft.issue=2&rft.spage=L23&rft.pages=L23-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aaeb22&rft_dat=%3Cproquest_O3W%3E2365654431%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365654431&rft_id=info:pmid/&rfr_iscdi=true |