Making the Planetary Material Diversity during the Early Assembling of the Solar System

Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2018-11, Vol.867 (2), p.L23
Hauptverfasser: Pignatale, Francesco C., Charnoz, Sébastien, Chaussidon, Marc, Jacquet, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L23
container_title Astrophysical journal. Letters
container_volume 867
creator Pignatale, Francesco C.
Charnoz, Sébastien
Chaussidon, Marc
Jacquet, Emmanuel
description Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites.
doi_str_mv 10.3847/2041-8213/aaeb22
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_aaeb22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365654431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</originalsourceid><addsrcrecordid>eNp9kM9LwzAcxYMoOKd3jwXBg1iXX03a45jTCR0KG3gMaZu6zKytSTvof29rdV7E0_vy-LzHlwfAJYJ3JKR8giFFfogRmUipEoyPwOhgHR9uGJyCM-e2EGLIUDgCr0v5ros3r94o78XIQtXStt5S1spqabx7vVfW6br1ssb-cHNpTetNnVO7xPRmmX_5q9JI661aV6vdOTjJpXHq4lvHYP0wX88Wfvz8-DSbxn5KQ1z7PIlYHqSc8gRBxFSecYKhTNIsYkglCGcooIimJOiUc6JCqniIIoIgzxEiY3Az1G6kEZXVu-57UUotFtNY6MI1AuIIwggG-x6-GuDKlh-NcrXYlo0tuvcEJixgAaWkp-BApbZ0zqr80Iug6KcW_Zai31UMU3eR2yGiy-q38x_8-g9cVlsjQtbxIsZEVFlOPgGsoYr0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365654431</pqid></control><display><type>article</type><title>Making the Planetary Material Diversity during the Early Assembling of the Solar System</title><source>IOP Publishing Free Content</source><creator>Pignatale, Francesco C. ; Charnoz, Sébastien ; Chaussidon, Marc ; Jacquet, Emmanuel</creator><creatorcontrib>Pignatale, Francesco C. ; Charnoz, Sébastien ; Chaussidon, Marc ; Jacquet, Emmanuel</creatorcontrib><description>Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aaeb22</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Accretion disks ; Astrophysics ; Chemical reactions ; Chondrites ; High temperature ; Inclusions ; Low temperature ; Meteorites ; meteorites, meteors, meteoroids ; Nebulae ; One dimensional models ; Organic chemistry ; Planet formation ; protoplanetary disks ; Refractory materials ; Sciences of the Universe ; Solar nebula ; Solar system ; stars: formation ; Sun ; Terrestrial planets ; Transport processes ; Vaporization</subject><ispartof>Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L23</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 10, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</citedby><cites>FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</cites><orcidid>0000-0003-0902-7421 ; 0000-0002-7442-491X ; 0000-0001-8475-0690 ; 0000-0001-5971-6271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb22/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaeb22$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-02900905$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><title>Making the Planetary Material Diversity during the Early Assembling of the Solar System</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites.</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Chemical reactions</subject><subject>Chondrites</subject><subject>High temperature</subject><subject>Inclusions</subject><subject>Low temperature</subject><subject>Meteorites</subject><subject>meteorites, meteors, meteoroids</subject><subject>Nebulae</subject><subject>One dimensional models</subject><subject>Organic chemistry</subject><subject>Planet formation</subject><subject>protoplanetary disks</subject><subject>Refractory materials</subject><subject>Sciences of the Universe</subject><subject>Solar nebula</subject><subject>Solar system</subject><subject>stars: formation</subject><subject>Sun</subject><subject>Terrestrial planets</subject><subject>Transport processes</subject><subject>Vaporization</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAcxYMoOKd3jwXBg1iXX03a45jTCR0KG3gMaZu6zKytSTvof29rdV7E0_vy-LzHlwfAJYJ3JKR8giFFfogRmUipEoyPwOhgHR9uGJyCM-e2EGLIUDgCr0v5ros3r94o78XIQtXStt5S1spqabx7vVfW6br1ssb-cHNpTetNnVO7xPRmmX_5q9JI661aV6vdOTjJpXHq4lvHYP0wX88Wfvz8-DSbxn5KQ1z7PIlYHqSc8gRBxFSecYKhTNIsYkglCGcooIimJOiUc6JCqniIIoIgzxEiY3Az1G6kEZXVu-57UUotFtNY6MI1AuIIwggG-x6-GuDKlh-NcrXYlo0tuvcEJixgAaWkp-BApbZ0zqr80Iug6KcW_Zai31UMU3eR2yGiy-q38x_8-g9cVlsjQtbxIsZEVFlOPgGsoYr0</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Pignatale, Francesco C.</creator><creator>Charnoz, Sébastien</creator><creator>Chaussidon, Marc</creator><creator>Jacquet, Emmanuel</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Bristol : IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid></search><sort><creationdate>20181110</creationdate><title>Making the Planetary Material Diversity during the Early Assembling of the Solar System</title><author>Pignatale, Francesco C. ; Charnoz, Sébastien ; Chaussidon, Marc ; Jacquet, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-7b96f5c747b1016efd7320abcd961eb12d15414c35154773e84e78193107f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Chemical reactions</topic><topic>Chondrites</topic><topic>High temperature</topic><topic>Inclusions</topic><topic>Low temperature</topic><topic>Meteorites</topic><topic>meteorites, meteors, meteoroids</topic><topic>Nebulae</topic><topic>One dimensional models</topic><topic>Organic chemistry</topic><topic>Planet formation</topic><topic>protoplanetary disks</topic><topic>Refractory materials</topic><topic>Sciences of the Universe</topic><topic>Solar nebula</topic><topic>Solar system</topic><topic>stars: formation</topic><topic>Sun</topic><topic>Terrestrial planets</topic><topic>Transport processes</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pignatale, Francesco C.</creatorcontrib><creatorcontrib>Charnoz, Sébastien</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Jacquet, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pignatale, Francesco C.</au><au>Charnoz, Sébastien</au><au>Chaussidon, Marc</au><au>Jacquet, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making the Planetary Material Diversity during the Early Assembling of the Solar System</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2018-11-10</date><risdate>2018</risdate><volume>867</volume><issue>2</issue><spage>L23</spage><pages>L23-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Chondritic meteorites, the building blocks of terrestrial planets, are made of an out-of-equilibrium assemblage of solids formed at high and low temperatures, either in our Solar system or previous generations of stars. For decades this was considered to result from large-scale transport processes in the Sun's isolated accretion disk. However, mounting evidence suggests that refractory inclusions in chondrites formed contemporaneously with the disk building. Here we numerically investigate, using a 1D model and several physical and chemical processes, the formation and transport of rocky materials during the collapse of the Sun's parent cloud and the consequent assembling of the Solar Nebula. The interplay between the cloud collapse, the dynamics of gas and dust, vaporization, recondensation, and thermal processing of different species in the disk results in a local mixing of solids with different thermal histories. Moreover, our results also explain the overabundance of refractory materials far from the Sun and their short-formation timescales, during the first tens of kyr of the Sun, corresponding to class 0-I, opening new windows into the origin of the compositional diversity of chondrites.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aaeb22</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0902-7421</orcidid><orcidid>https://orcid.org/0000-0002-7442-491X</orcidid><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid><orcidid>https://orcid.org/0000-0001-5971-6271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2018-11, Vol.867 (2), p.L23
issn 2041-8205
2041-8213
language eng
recordid cdi_iop_journals_10_3847_2041_8213_aaeb22
source IOP Publishing Free Content
subjects Accretion disks
Astrophysics
Chemical reactions
Chondrites
High temperature
Inclusions
Low temperature
Meteorites
meteorites, meteors, meteoroids
Nebulae
One dimensional models
Organic chemistry
Planet formation
protoplanetary disks
Refractory materials
Sciences of the Universe
Solar nebula
Solar system
stars: formation
Sun
Terrestrial planets
Transport processes
Vaporization
title Making the Planetary Material Diversity during the Early Assembling of the Solar System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20the%20Planetary%20Material%20Diversity%20during%20the%20Early%20Assembling%20of%20the%20Solar%20System&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Pignatale,%20Francesco%20C.&rft.date=2018-11-10&rft.volume=867&rft.issue=2&rft.spage=L23&rft.pages=L23-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aaeb22&rft_dat=%3Cproquest_O3W%3E2365654431%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365654431&rft_id=info:pmid/&rfr_iscdi=true