Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission
Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2018-03, Vol.855 (2), p.L25 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L25 |
container_title | Astrophysical journal. Letters |
container_volume | 855 |
creator | Kong, Shuo Tan, Jonathan C. Arce, Héctor G. Caselli, Paola Fontani, Francesco Butler, Michael J. |
description | Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the "dense gas" detection probability function (DPF), i.e., as a function of the local mass surface density, , for various choices of thresholds of millimeter continuum emission to define "dense gas." We then estimate the dense gas mass fraction, fdg, in the central region of the IRDC and, via extrapolation with the DPF and the known probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ϵff ∼ 10%, with approximately a factor of two systematic uncertainties. |
doi_str_mv | 10.3847/2041-8213/aab151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_2041_8213_aab151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365640469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4071-e5801fca3ea6b0b95a88f16b90f23e0f8a40a2ae6bb442041f5cbc6dc1d723b93</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhqOqlUop9x4tcW3AX3G83FBY6EqgSm05W2NnXAwbO7V3of33TZRqOfU0o_l4Zl69VfWJ0TOhZXvOqWS15kycA1jWsDfV0aH09pDT5n31oZRHSjlVTB9VT13KSNYD5p8YHZIQCZA7KCU8I9lEnyFjT64gP5Fum_b9BbkkXRpGyKGkSCzuXhAjuQt9vflG1r93IbpdmDoQe8LOBBmGiR4mXoofq3cetgVP_sXj6v56_aP7Ut9-vdl0l7e1k7RlNTaaMu9AIChL7aoBrT1TdkU9F0i9BkmBAyprpZx1-cZZp3rH-pYLuxLH1feFW15w3Fsz5jBA_mMSBJOxIGT3YNwDbCfVxRQ03HnhFedGNy0zkjJndKvBOI9-pVjvrPIT9XShjjn92mPZmce0z3ESYrhQjZJUqvk2XaZcTqVk9IfrjJrZKDN_bGZXzGLUtPJ5WQlpfGX-d_wvAxyS7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365640469</pqid></control><display><type>article</type><title>Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission</title><source>IOP Publishing Free Content</source><creator>Kong, Shuo ; Tan, Jonathan C. ; Arce, Héctor G. ; Caselli, Paola ; Fontani, Francesco ; Butler, Michael J.</creator><creatorcontrib>Kong, Shuo ; Tan, Jonathan C. ; Arce, Héctor G. ; Caselli, Paola ; Fontani, Francesco ; Butler, Michael J.</creatorcontrib><description>Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the "dense gas" detection probability function (DPF), i.e., as a function of the local mass surface density, , for various choices of thresholds of millimeter continuum emission to define "dense gas." We then estimate the dense gas mass fraction, fdg, in the central region of the IRDC and, via extrapolation with the DPF and the known probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ϵff ∼ 10%, with approximately a factor of two systematic uncertainties.</description><identifier>ISSN: 2041-8205</identifier><identifier>ISSN: 2041-8213</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aab151</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Arrays ; Continuum radiation ; Cores ; Distribution functions ; dust ; dust, extinction ; Emission ; Extinction ; Infrared astronomy ; ISM: clouds ; ISM: structure ; Molecular clouds ; Probability distribution ; Probability distribution functions ; Protostars ; radio continuum: ISM ; Radio telescopes ; Star & galaxy formation ; Star formation ; stars: formation ; stars: protostars ; Wavelengths</subject><ispartof>Astrophysical journal. Letters, 2018-03, Vol.855 (2), p.L25</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4071-e5801fca3ea6b0b95a88f16b90f23e0f8a40a2ae6bb442041f5cbc6dc1d723b93</citedby><cites>FETCH-LOGICAL-c4071-e5801fca3ea6b0b95a88f16b90f23e0f8a40a2ae6bb442041f5cbc6dc1d723b93</cites><orcidid>0000-0001-5653-7817 ; 0000-0003-1031-898X ; 0000-0003-1481-7911 ; 0000-0003-0348-3418 ; 0000-0002-8469-2029 ; 0000-0002-3389-9142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aab151/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aab151$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/503435$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Shuo</creatorcontrib><creatorcontrib>Tan, Jonathan C.</creatorcontrib><creatorcontrib>Arce, Héctor G.</creatorcontrib><creatorcontrib>Caselli, Paola</creatorcontrib><creatorcontrib>Fontani, Francesco</creatorcontrib><creatorcontrib>Butler, Michael J.</creatorcontrib><title>Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the "dense gas" detection probability function (DPF), i.e., as a function of the local mass surface density, , for various choices of thresholds of millimeter continuum emission to define "dense gas." We then estimate the dense gas mass fraction, fdg, in the central region of the IRDC and, via extrapolation with the DPF and the known probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ϵff ∼ 10%, with approximately a factor of two systematic uncertainties.</description><subject>Arrays</subject><subject>Continuum radiation</subject><subject>Cores</subject><subject>Distribution functions</subject><subject>dust</subject><subject>dust, extinction</subject><subject>Emission</subject><subject>Extinction</subject><subject>Infrared astronomy</subject><subject>ISM: clouds</subject><subject>ISM: structure</subject><subject>Molecular clouds</subject><subject>Probability distribution</subject><subject>Probability distribution functions</subject><subject>Protostars</subject><subject>radio continuum: ISM</subject><subject>Radio telescopes</subject><subject>Star & galaxy formation</subject><subject>Star formation</subject><subject>stars: formation</subject><subject>stars: protostars</subject><subject>Wavelengths</subject><issn>2041-8205</issn><issn>2041-8213</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhqOqlUop9x4tcW3AX3G83FBY6EqgSm05W2NnXAwbO7V3of33TZRqOfU0o_l4Zl69VfWJ0TOhZXvOqWS15kycA1jWsDfV0aH09pDT5n31oZRHSjlVTB9VT13KSNYD5p8YHZIQCZA7KCU8I9lEnyFjT64gP5Fum_b9BbkkXRpGyKGkSCzuXhAjuQt9vflG1r93IbpdmDoQe8LOBBmGiR4mXoofq3cetgVP_sXj6v56_aP7Ut9-vdl0l7e1k7RlNTaaMu9AIChL7aoBrT1TdkU9F0i9BkmBAyprpZx1-cZZp3rH-pYLuxLH1feFW15w3Fsz5jBA_mMSBJOxIGT3YNwDbCfVxRQ03HnhFedGNy0zkjJndKvBOI9-pVjvrPIT9XShjjn92mPZmce0z3ESYrhQjZJUqvk2XaZcTqVk9IfrjJrZKDN_bGZXzGLUtPJ5WQlpfGX-d_wvAxyS7w</recordid><startdate>20180310</startdate><enddate>20180310</enddate><creator>Kong, Shuo</creator><creator>Tan, Jonathan C.</creator><creator>Arce, Héctor G.</creator><creator>Caselli, Paola</creator><creator>Fontani, Francesco</creator><creator>Butler, Michael J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0001-5653-7817</orcidid><orcidid>https://orcid.org/0000-0003-1031-898X</orcidid><orcidid>https://orcid.org/0000-0003-1481-7911</orcidid><orcidid>https://orcid.org/0000-0003-0348-3418</orcidid><orcidid>https://orcid.org/0000-0002-8469-2029</orcidid><orcidid>https://orcid.org/0000-0002-3389-9142</orcidid></search><sort><creationdate>20180310</creationdate><title>Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission</title><author>Kong, Shuo ; Tan, Jonathan C. ; Arce, Héctor G. ; Caselli, Paola ; Fontani, Francesco ; Butler, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4071-e5801fca3ea6b0b95a88f16b90f23e0f8a40a2ae6bb442041f5cbc6dc1d723b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arrays</topic><topic>Continuum radiation</topic><topic>Cores</topic><topic>Distribution functions</topic><topic>dust</topic><topic>dust, extinction</topic><topic>Emission</topic><topic>Extinction</topic><topic>Infrared astronomy</topic><topic>ISM: clouds</topic><topic>ISM: structure</topic><topic>Molecular clouds</topic><topic>Probability distribution</topic><topic>Probability distribution functions</topic><topic>Protostars</topic><topic>radio continuum: ISM</topic><topic>Radio telescopes</topic><topic>Star & galaxy formation</topic><topic>Star formation</topic><topic>stars: formation</topic><topic>stars: protostars</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Shuo</creatorcontrib><creatorcontrib>Tan, Jonathan C.</creatorcontrib><creatorcontrib>Arce, Héctor G.</creatorcontrib><creatorcontrib>Caselli, Paola</creatorcontrib><creatorcontrib>Fontani, Francesco</creatorcontrib><creatorcontrib>Butler, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Shuo</au><au>Tan, Jonathan C.</au><au>Arce, Héctor G.</au><au>Caselli, Paola</au><au>Fontani, Francesco</au><au>Butler, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2018-03-10</date><risdate>2018</risdate><volume>855</volume><issue>2</issue><spage>L25</spage><pages>L25-</pages><issn>2041-8205</issn><issn>2041-8213</issn><eissn>2041-8213</eissn><abstract>Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the "dense gas" detection probability function (DPF), i.e., as a function of the local mass surface density, , for various choices of thresholds of millimeter continuum emission to define "dense gas." We then estimate the dense gas mass fraction, fdg, in the central region of the IRDC and, via extrapolation with the DPF and the known probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ϵff ∼ 10%, with approximately a factor of two systematic uncertainties.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aab151</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5653-7817</orcidid><orcidid>https://orcid.org/0000-0003-1031-898X</orcidid><orcidid>https://orcid.org/0000-0003-1481-7911</orcidid><orcidid>https://orcid.org/0000-0003-0348-3418</orcidid><orcidid>https://orcid.org/0000-0002-8469-2029</orcidid><orcidid>https://orcid.org/0000-0002-3389-9142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2018-03, Vol.855 (2), p.L25 |
issn | 2041-8205 2041-8213 2041-8213 |
language | eng |
recordid | cdi_iop_journals_10_3847_2041_8213_aab151 |
source | IOP Publishing Free Content |
subjects | Arrays Continuum radiation Cores Distribution functions dust dust, extinction Emission Extinction Infrared astronomy ISM: clouds ISM: structure Molecular clouds Probability distribution Probability distribution functions Protostars radio continuum: ISM Radio telescopes Star & galaxy formation Star formation stars: formation stars: protostars Wavelengths |
title | Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%20Emergence%20in%20a%20Massive%20Infrared%20Dark%20Cloud:%20A%20Comparison%20between%20Mid-IR%20Extinction%20and%201.3%20mm%20Emission&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Kong,%20Shuo&rft.date=2018-03-10&rft.volume=855&rft.issue=2&rft.spage=L25&rft.pages=L25-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aab151&rft_dat=%3Cproquest_O3W%3E2365640469%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365640469&rft_id=info:pmid/&rfr_iscdi=true |