The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution

The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2020-10, Vol.250 (2), p.28
Hauptverfasser: Hoeksema, J. Todd, Abbett, William P., Bercik, David J., Cheung, Mark C. M., DeRosa, Marc L., Fisher, George H., Hayashi, Keiji, Kazachenko, Maria D., Liu, Yang, Lumme, Erkka, Lynch, Benjamin J., Sun, Xudong, Welsch, Brian T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 28
container_title The Astrophysical journal. Supplement series
container_volume 250
creator Hoeksema, J. Todd
Abbett, William P.
Bercik, David J.
Cheung, Mark C. M.
DeRosa, Marc L.
Fisher, George H.
Hayashi, Keiji
Kazachenko, Maria D.
Liu, Yang
Lumme, Erkka
Lynch, Benjamin J.
Sun, Xudong
Welsch, Brian T.
description The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.
doi_str_mv 10.3847/1538-4365/abb3fb
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4365_abb3fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448681171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwHxZt1Lk6aZN9lv2PCyeQ1Jms6OrqlpJ3j1Lzej4i56evD4fj_v8UHolsAjFSwdkISKiFGeDJTWNNdnqPe7Okc9AJ5GAGx4ia6aZgcAaUKHPfS1frN45LyrVIlnpdNhTD5ceWiLsPKfeOUyWz7hTVNUWzxfLfCrNa3zeKW2lW3d1qs9VlWGx66uS-vxWLUKtw6PbWv9vqhO9K5RGDwtbJmdrlyji1yVjb35mX20mU7Wo3m0fJktRs_LyDDG20iQmDFrqDYKhCWMZwZyZZOhMmTITKpVzCCxKU01pDEXnFLGc6BME2BEc9pHdx239u79YJtW7tzBh88aGciCC0JSElLQpYx3TeNtLmtf7IMJSUAeTcujVnnUKjvToXLfVQpXn5iq3gVwAjKWsZB1lofcwx-5f7HfhmCNIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448681171</pqid></control><display><type>article</type><title>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</title><source>Institute of Physics Open Access Journal Titles</source><creator>Hoeksema, J. Todd ; Abbett, William P. ; Bercik, David J. ; Cheung, Mark C. M. ; DeRosa, Marc L. ; Fisher, George H. ; Hayashi, Keiji ; Kazachenko, Maria D. ; Liu, Yang ; Lumme, Erkka ; Lynch, Benjamin J. ; Sun, Xudong ; Welsch, Brian T.</creator><creatorcontrib>Hoeksema, J. Todd ; Abbett, William P. ; Bercik, David J. ; Cheung, Mark C. M. ; DeRosa, Marc L. ; Fisher, George H. ; Hayashi, Keiji ; Kazachenko, Maria D. ; Liu, Yang ; Lumme, Erkka ; Lynch, Benjamin J. ; Sun, Xudong ; Welsch, Brian T.</creatorcontrib><description>The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/abb3fb</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Computational fluid dynamics ; Computer simulation ; Corona ; Coronal magnetic fields ; Coronal observations ; Electric fields ; Emissivity ; Evolution ; Fluid flow ; Heliosphere ; Magnetic fields ; Magnetic flux ; Magnetism ; Magnetohydrodynamics ; Photosphere ; Solar activity ; Solar corona ; Solar magnetic field ; Solar magnetic fields ; Three dimensional models ; Time series</subject><ispartof>The Astrophysical journal. Supplement series, 2020-10, Vol.250 (2), p.28</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</citedby><cites>FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</cites><orcidid>0000-0001-6886-855X ; 0000-0001-5540-8108 ; 0000-0002-0671-689X ; 0000-0003-3961-2381 ; 0000-0003-2045-5320 ; 0000-0001-9130-7312 ; 0000-0002-6338-0691 ; 0000-0001-9046-6688 ; 0000-0001-8975-7605 ; 0000-0003-2110-9753 ; 0000-0003-2244-641X ; 0000-0002-6912-5704 ; 0000-0003-4043-616X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/abb3fb/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/abb3fb$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Hoeksema, J. Todd</creatorcontrib><creatorcontrib>Abbett, William P.</creatorcontrib><creatorcontrib>Bercik, David J.</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><creatorcontrib>DeRosa, Marc L.</creatorcontrib><creatorcontrib>Fisher, George H.</creatorcontrib><creatorcontrib>Hayashi, Keiji</creatorcontrib><creatorcontrib>Kazachenko, Maria D.</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lumme, Erkka</creatorcontrib><creatorcontrib>Lynch, Benjamin J.</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Welsch, Brian T.</creatorcontrib><title>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Corona</subject><subject>Coronal magnetic fields</subject><subject>Coronal observations</subject><subject>Electric fields</subject><subject>Emissivity</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Heliosphere</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Photosphere</subject><subject>Solar activity</subject><subject>Solar corona</subject><subject>Solar magnetic field</subject><subject>Solar magnetic fields</subject><subject>Three dimensional models</subject><subject>Time series</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwHxZt1Lk6aZN9lv2PCyeQ1Jms6OrqlpJ3j1Lzej4i56evD4fj_v8UHolsAjFSwdkISKiFGeDJTWNNdnqPe7Okc9AJ5GAGx4ia6aZgcAaUKHPfS1frN45LyrVIlnpdNhTD5ceWiLsPKfeOUyWz7hTVNUWzxfLfCrNa3zeKW2lW3d1qs9VlWGx66uS-vxWLUKtw6PbWv9vqhO9K5RGDwtbJmdrlyji1yVjb35mX20mU7Wo3m0fJktRs_LyDDG20iQmDFrqDYKhCWMZwZyZZOhMmTITKpVzCCxKU01pDEXnFLGc6BME2BEc9pHdx239u79YJtW7tzBh88aGciCC0JSElLQpYx3TeNtLmtf7IMJSUAeTcujVnnUKjvToXLfVQpXn5iq3gVwAjKWsZB1lofcwx-5f7HfhmCNIg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hoeksema, J. Todd</creator><creator>Abbett, William P.</creator><creator>Bercik, David J.</creator><creator>Cheung, Mark C. M.</creator><creator>DeRosa, Marc L.</creator><creator>Fisher, George H.</creator><creator>Hayashi, Keiji</creator><creator>Kazachenko, Maria D.</creator><creator>Liu, Yang</creator><creator>Lumme, Erkka</creator><creator>Lynch, Benjamin J.</creator><creator>Sun, Xudong</creator><creator>Welsch, Brian T.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6886-855X</orcidid><orcidid>https://orcid.org/0000-0001-5540-8108</orcidid><orcidid>https://orcid.org/0000-0002-0671-689X</orcidid><orcidid>https://orcid.org/0000-0003-3961-2381</orcidid><orcidid>https://orcid.org/0000-0003-2045-5320</orcidid><orcidid>https://orcid.org/0000-0001-9130-7312</orcidid><orcidid>https://orcid.org/0000-0002-6338-0691</orcidid><orcidid>https://orcid.org/0000-0001-9046-6688</orcidid><orcidid>https://orcid.org/0000-0001-8975-7605</orcidid><orcidid>https://orcid.org/0000-0003-2110-9753</orcidid><orcidid>https://orcid.org/0000-0003-2244-641X</orcidid><orcidid>https://orcid.org/0000-0002-6912-5704</orcidid><orcidid>https://orcid.org/0000-0003-4043-616X</orcidid></search><sort><creationdate>20201001</creationdate><title>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</title><author>Hoeksema, J. Todd ; Abbett, William P. ; Bercik, David J. ; Cheung, Mark C. M. ; DeRosa, Marc L. ; Fisher, George H. ; Hayashi, Keiji ; Kazachenko, Maria D. ; Liu, Yang ; Lumme, Erkka ; Lynch, Benjamin J. ; Sun, Xudong ; Welsch, Brian T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Corona</topic><topic>Coronal magnetic fields</topic><topic>Coronal observations</topic><topic>Electric fields</topic><topic>Emissivity</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Heliosphere</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Photosphere</topic><topic>Solar activity</topic><topic>Solar corona</topic><topic>Solar magnetic field</topic><topic>Solar magnetic fields</topic><topic>Three dimensional models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoeksema, J. Todd</creatorcontrib><creatorcontrib>Abbett, William P.</creatorcontrib><creatorcontrib>Bercik, David J.</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><creatorcontrib>DeRosa, Marc L.</creatorcontrib><creatorcontrib>Fisher, George H.</creatorcontrib><creatorcontrib>Hayashi, Keiji</creatorcontrib><creatorcontrib>Kazachenko, Maria D.</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lumme, Erkka</creatorcontrib><creatorcontrib>Lynch, Benjamin J.</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Welsch, Brian T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoeksema, J. Todd</au><au>Abbett, William P.</au><au>Bercik, David J.</au><au>Cheung, Mark C. M.</au><au>DeRosa, Marc L.</au><au>Fisher, George H.</au><au>Hayashi, Keiji</au><au>Kazachenko, Maria D.</au><au>Liu, Yang</au><au>Lumme, Erkka</au><au>Lynch, Benjamin J.</au><au>Sun, Xudong</au><au>Welsch, Brian T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>2</issue><spage>28</spage><pages>28-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/abb3fb</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6886-855X</orcidid><orcidid>https://orcid.org/0000-0001-5540-8108</orcidid><orcidid>https://orcid.org/0000-0002-0671-689X</orcidid><orcidid>https://orcid.org/0000-0003-3961-2381</orcidid><orcidid>https://orcid.org/0000-0003-2045-5320</orcidid><orcidid>https://orcid.org/0000-0001-9130-7312</orcidid><orcidid>https://orcid.org/0000-0002-6338-0691</orcidid><orcidid>https://orcid.org/0000-0001-9046-6688</orcidid><orcidid>https://orcid.org/0000-0001-8975-7605</orcidid><orcidid>https://orcid.org/0000-0003-2110-9753</orcidid><orcidid>https://orcid.org/0000-0003-2244-641X</orcidid><orcidid>https://orcid.org/0000-0002-6912-5704</orcidid><orcidid>https://orcid.org/0000-0003-4043-616X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2020-10, Vol.250 (2), p.28
issn 0067-0049
1538-4365
language eng
recordid cdi_iop_journals_10_3847_1538_4365_abb3fb
source Institute of Physics Open Access Journal Titles
subjects Computational fluid dynamics
Computer simulation
Corona
Coronal magnetic fields
Coronal observations
Electric fields
Emissivity
Evolution
Fluid flow
Heliosphere
Magnetic fields
Magnetic flux
Magnetism
Magnetohydrodynamics
Photosphere
Solar activity
Solar corona
Solar magnetic field
Solar magnetic fields
Three dimensional models
Time series
title The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Coronal%20Global%20Evolutionary%20Model:%20Using%20HMI%20Vector%20Magnetogram%20and%20Doppler%20Data%20to%20Determine%20Coronal%20Magnetic%20Field%20Evolution&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Hoeksema,%20J.%20Todd&rft.date=2020-10-01&rft.volume=250&rft.issue=2&rft.spage=28&rft.pages=28-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/abb3fb&rft_dat=%3Cproquest_O3W%3E2448681171%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448681171&rft_id=info:pmid/&rfr_iscdi=true