The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-di...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2020-10, Vol.250 (2), p.28 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 28 |
container_title | The Astrophysical journal. Supplement series |
container_volume | 250 |
creator | Hoeksema, J. Todd Abbett, William P. Bercik, David J. Cheung, Mark C. M. DeRosa, Marc L. Fisher, George H. Hayashi, Keiji Kazachenko, Maria D. Liu, Yang Lumme, Erkka Lynch, Benjamin J. Sun, Xudong Welsch, Brian T. |
description | The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February. |
doi_str_mv | 10.3847/1538-4365/abb3fb |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4365_abb3fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448681171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwHxZt1Lk6aZN9lv2PCyeQ1Jms6OrqlpJ3j1Lzej4i56evD4fj_v8UHolsAjFSwdkISKiFGeDJTWNNdnqPe7Okc9AJ5GAGx4ia6aZgcAaUKHPfS1frN45LyrVIlnpdNhTD5ceWiLsPKfeOUyWz7hTVNUWzxfLfCrNa3zeKW2lW3d1qs9VlWGx66uS-vxWLUKtw6PbWv9vqhO9K5RGDwtbJmdrlyji1yVjb35mX20mU7Wo3m0fJktRs_LyDDG20iQmDFrqDYKhCWMZwZyZZOhMmTITKpVzCCxKU01pDEXnFLGc6BME2BEc9pHdx239u79YJtW7tzBh88aGciCC0JSElLQpYx3TeNtLmtf7IMJSUAeTcujVnnUKjvToXLfVQpXn5iq3gVwAjKWsZB1lofcwx-5f7HfhmCNIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448681171</pqid></control><display><type>article</type><title>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</title><source>Institute of Physics Open Access Journal Titles</source><creator>Hoeksema, J. Todd ; Abbett, William P. ; Bercik, David J. ; Cheung, Mark C. M. ; DeRosa, Marc L. ; Fisher, George H. ; Hayashi, Keiji ; Kazachenko, Maria D. ; Liu, Yang ; Lumme, Erkka ; Lynch, Benjamin J. ; Sun, Xudong ; Welsch, Brian T.</creator><creatorcontrib>Hoeksema, J. Todd ; Abbett, William P. ; Bercik, David J. ; Cheung, Mark C. M. ; DeRosa, Marc L. ; Fisher, George H. ; Hayashi, Keiji ; Kazachenko, Maria D. ; Liu, Yang ; Lumme, Erkka ; Lynch, Benjamin J. ; Sun, Xudong ; Welsch, Brian T.</creatorcontrib><description>The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/abb3fb</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Computational fluid dynamics ; Computer simulation ; Corona ; Coronal magnetic fields ; Coronal observations ; Electric fields ; Emissivity ; Evolution ; Fluid flow ; Heliosphere ; Magnetic fields ; Magnetic flux ; Magnetism ; Magnetohydrodynamics ; Photosphere ; Solar activity ; Solar corona ; Solar magnetic field ; Solar magnetic fields ; Three dimensional models ; Time series</subject><ispartof>The Astrophysical journal. Supplement series, 2020-10, Vol.250 (2), p.28</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</citedby><cites>FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</cites><orcidid>0000-0001-6886-855X ; 0000-0001-5540-8108 ; 0000-0002-0671-689X ; 0000-0003-3961-2381 ; 0000-0003-2045-5320 ; 0000-0001-9130-7312 ; 0000-0002-6338-0691 ; 0000-0001-9046-6688 ; 0000-0001-8975-7605 ; 0000-0003-2110-9753 ; 0000-0003-2244-641X ; 0000-0002-6912-5704 ; 0000-0003-4043-616X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/abb3fb/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/abb3fb$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Hoeksema, J. Todd</creatorcontrib><creatorcontrib>Abbett, William P.</creatorcontrib><creatorcontrib>Bercik, David J.</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><creatorcontrib>DeRosa, Marc L.</creatorcontrib><creatorcontrib>Fisher, George H.</creatorcontrib><creatorcontrib>Hayashi, Keiji</creatorcontrib><creatorcontrib>Kazachenko, Maria D.</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lumme, Erkka</creatorcontrib><creatorcontrib>Lynch, Benjamin J.</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Welsch, Brian T.</creatorcontrib><title>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Corona</subject><subject>Coronal magnetic fields</subject><subject>Coronal observations</subject><subject>Electric fields</subject><subject>Emissivity</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Heliosphere</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Photosphere</subject><subject>Solar activity</subject><subject>Solar corona</subject><subject>Solar magnetic field</subject><subject>Solar magnetic fields</subject><subject>Three dimensional models</subject><subject>Time series</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwHxZt1Lk6aZN9lv2PCyeQ1Jms6OrqlpJ3j1Lzej4i56evD4fj_v8UHolsAjFSwdkISKiFGeDJTWNNdnqPe7Okc9AJ5GAGx4ia6aZgcAaUKHPfS1frN45LyrVIlnpdNhTD5ceWiLsPKfeOUyWz7hTVNUWzxfLfCrNa3zeKW2lW3d1qs9VlWGx66uS-vxWLUKtw6PbWv9vqhO9K5RGDwtbJmdrlyji1yVjb35mX20mU7Wo3m0fJktRs_LyDDG20iQmDFrqDYKhCWMZwZyZZOhMmTITKpVzCCxKU01pDEXnFLGc6BME2BEc9pHdx239u79YJtW7tzBh88aGciCC0JSElLQpYx3TeNtLmtf7IMJSUAeTcujVnnUKjvToXLfVQpXn5iq3gVwAjKWsZB1lofcwx-5f7HfhmCNIg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hoeksema, J. Todd</creator><creator>Abbett, William P.</creator><creator>Bercik, David J.</creator><creator>Cheung, Mark C. M.</creator><creator>DeRosa, Marc L.</creator><creator>Fisher, George H.</creator><creator>Hayashi, Keiji</creator><creator>Kazachenko, Maria D.</creator><creator>Liu, Yang</creator><creator>Lumme, Erkka</creator><creator>Lynch, Benjamin J.</creator><creator>Sun, Xudong</creator><creator>Welsch, Brian T.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6886-855X</orcidid><orcidid>https://orcid.org/0000-0001-5540-8108</orcidid><orcidid>https://orcid.org/0000-0002-0671-689X</orcidid><orcidid>https://orcid.org/0000-0003-3961-2381</orcidid><orcidid>https://orcid.org/0000-0003-2045-5320</orcidid><orcidid>https://orcid.org/0000-0001-9130-7312</orcidid><orcidid>https://orcid.org/0000-0002-6338-0691</orcidid><orcidid>https://orcid.org/0000-0001-9046-6688</orcidid><orcidid>https://orcid.org/0000-0001-8975-7605</orcidid><orcidid>https://orcid.org/0000-0003-2110-9753</orcidid><orcidid>https://orcid.org/0000-0003-2244-641X</orcidid><orcidid>https://orcid.org/0000-0002-6912-5704</orcidid><orcidid>https://orcid.org/0000-0003-4043-616X</orcidid></search><sort><creationdate>20201001</creationdate><title>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</title><author>Hoeksema, J. Todd ; Abbett, William P. ; Bercik, David J. ; Cheung, Mark C. M. ; DeRosa, Marc L. ; Fisher, George H. ; Hayashi, Keiji ; Kazachenko, Maria D. ; Liu, Yang ; Lumme, Erkka ; Lynch, Benjamin J. ; Sun, Xudong ; Welsch, Brian T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-81244ec3bca08e146dc0fae59ac194c7ba2405e737b0726863346f034b1041b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Corona</topic><topic>Coronal magnetic fields</topic><topic>Coronal observations</topic><topic>Electric fields</topic><topic>Emissivity</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Heliosphere</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Photosphere</topic><topic>Solar activity</topic><topic>Solar corona</topic><topic>Solar magnetic field</topic><topic>Solar magnetic fields</topic><topic>Three dimensional models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoeksema, J. Todd</creatorcontrib><creatorcontrib>Abbett, William P.</creatorcontrib><creatorcontrib>Bercik, David J.</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><creatorcontrib>DeRosa, Marc L.</creatorcontrib><creatorcontrib>Fisher, George H.</creatorcontrib><creatorcontrib>Hayashi, Keiji</creatorcontrib><creatorcontrib>Kazachenko, Maria D.</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lumme, Erkka</creatorcontrib><creatorcontrib>Lynch, Benjamin J.</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Welsch, Brian T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoeksema, J. Todd</au><au>Abbett, William P.</au><au>Bercik, David J.</au><au>Cheung, Mark C. M.</au><au>DeRosa, Marc L.</au><au>Fisher, George H.</au><au>Hayashi, Keiji</au><au>Kazachenko, Maria D.</au><au>Liu, Yang</au><au>Lumme, Erkka</au><au>Lynch, Benjamin J.</au><au>Sun, Xudong</au><au>Welsch, Brian T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>2</issue><spage>28</spage><pages>28-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The Coronal Global Evolutionary Model (CGEM) provides data-driven simulations of the magnetic field in the solar corona to better understand the build-up of magnetic energy that leads to eruptive events. The CGEM project has developed six capabilities. CGEM modules (1) prepare time series of full-disk vector magnetic field observations to (2) derive the changing electric field in the solar photosphere over active-region scales. This local electric field is (3) incorporated into a surface flux transport model that reconstructs a global electric field that evolves magnetic flux in a consistent way. These electric fields drive a (4) 3D spherical magnetofrictional (SMF) model, either at high resolution over a restricted range of solid angles or at lower resolution over a global domain to determine the magnetic field and current density in the low corona. An SMF-generated initial field above an active region and the evolving electric field at the photosphere are used to drive (5) detailed magnetohydrodynamic (MHD) simulations of active regions in the low corona. SMF or MHD solutions are then used to compute emissivity proxies that can be compared with coronal observations. Finally, a lower-resolution SMF magnetic field is used to initialize (6) a global MHD model that is driven by an SMF electric field time series to simulate the outer corona and heliosphere, ultimately connecting Sun to Earth. As a demonstration, this report features results of CGEM applied to observations of the evolution of NOAA Active Region 11158 in 2011 February.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/abb3fb</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6886-855X</orcidid><orcidid>https://orcid.org/0000-0001-5540-8108</orcidid><orcidid>https://orcid.org/0000-0002-0671-689X</orcidid><orcidid>https://orcid.org/0000-0003-3961-2381</orcidid><orcidid>https://orcid.org/0000-0003-2045-5320</orcidid><orcidid>https://orcid.org/0000-0001-9130-7312</orcidid><orcidid>https://orcid.org/0000-0002-6338-0691</orcidid><orcidid>https://orcid.org/0000-0001-9046-6688</orcidid><orcidid>https://orcid.org/0000-0001-8975-7605</orcidid><orcidid>https://orcid.org/0000-0003-2110-9753</orcidid><orcidid>https://orcid.org/0000-0003-2244-641X</orcidid><orcidid>https://orcid.org/0000-0002-6912-5704</orcidid><orcidid>https://orcid.org/0000-0003-4043-616X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0067-0049 |
ispartof | The Astrophysical journal. Supplement series, 2020-10, Vol.250 (2), p.28 |
issn | 0067-0049 1538-4365 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4365_abb3fb |
source | Institute of Physics Open Access Journal Titles |
subjects | Computational fluid dynamics Computer simulation Corona Coronal magnetic fields Coronal observations Electric fields Emissivity Evolution Fluid flow Heliosphere Magnetic fields Magnetic flux Magnetism Magnetohydrodynamics Photosphere Solar activity Solar corona Solar magnetic field Solar magnetic fields Three dimensional models Time series |
title | The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Coronal%20Global%20Evolutionary%20Model:%20Using%20HMI%20Vector%20Magnetogram%20and%20Doppler%20Data%20to%20Determine%20Coronal%20Magnetic%20Field%20Evolution&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Hoeksema,%20J.%20Todd&rft.date=2020-10-01&rft.volume=250&rft.issue=2&rft.spage=28&rft.pages=28-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/abb3fb&rft_dat=%3Cproquest_O3W%3E2448681171%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448681171&rft_id=info:pmid/&rfr_iscdi=true |