Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations
The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2020-02, Vol.246 (2), p.38 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 38 |
container_title | The Astrophysical journal. Supplement series |
container_volume | 246 |
creator | Adhikari, L. Zank, G. P. Zhao, L.-L. Kasper, J. C. Korreck, K. E. Stevens, M. Case, A. W. Whittlesey, P. Larson, D. Livi, R. Klein, K. G. |
description | The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy. |
doi_str_mv | 10.3847/1538-4365/ab5852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4365_ab5852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357601362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7uXQZEULBOmkfbLGVwVBiZwnQfkiaVjrWpN63gv7dDRTfi6sLlfPdxEDqPyS3LeLqIBcsizhKx0EZkgh6g2U_rEM0ISdKIEC6P0UkIO0JIKpicoW0xgBka15YOF6Db0Hno8bO3rqnbF6xbi1c1hB5vwNQ9zjW8OsBb32jAOXjj8FW-za_xxgQHH7qvfRtO0VGlm-DOvuscFav7YvkYrTcPT8u7dVRynvQR1xWhiawkI9YwJy0VtEytk4xmpEws06mMy_EZSjnVcSaNqZiRVoqRSmM2RxfT2A78--BCr3Z-gHbcqCgTaUJiltCRIhNVgg8BXKU6qN80fKqYqL05tdek9prUZG6M3EyR2ne_M__BL__Adbcb7-CJomNMdbZiXyqyetM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357601362</pqid></control><display><type>article</type><title>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</title><source>Institute of Physics Open Access Journal Titles</source><creator>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Kasper, J. C. ; Korreck, K. E. ; Stevens, M. ; Case, A. W. ; Whittlesey, P. ; Larson, D. ; Livi, R. ; Klein, K. G.</creator><creatorcontrib>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Kasper, J. C. ; Korreck, K. E. ; Stevens, M. ; Case, A. W. ; Whittlesey, P. ; Larson, D. ; Livi, R. ; Klein, K. G.</creatorcontrib><description>The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ab5852</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Computational fluid dynamics ; Correlation ; Energy ; Evolution ; Fluid flow ; Helicity ; Interplanetary turbulence ; Kinetic energy ; Magnetohydrodynamic turbulence ; Perihelions ; Propagation modes ; Protons ; Residual energy ; Slow solar wind ; Solar probes ; Solar wind ; Solar wind electrons ; Turbulence ; Turbulent energy ; Variation</subject><ispartof>The Astrophysical journal. Supplement series, 2020-02, Vol.246 (2), p.38</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</citedby><cites>FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</cites><orcidid>0000-0002-4299-0490 ; 0000-0003-1549-5256 ; 0000-0002-3520-4041 ; 0000-0002-4642-6192 ; 0000-0002-7728-0085 ; 0000-0002-7077-930X ; 0000-0001-6095-2490 ; 0000-0001-6038-1923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab5852/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab5852$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Korreck, K. E.</creatorcontrib><creatorcontrib>Stevens, M.</creatorcontrib><creatorcontrib>Case, A. W.</creatorcontrib><creatorcontrib>Whittlesey, P.</creatorcontrib><creatorcontrib>Larson, D.</creatorcontrib><creatorcontrib>Livi, R.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><title>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy.</description><subject>Computational fluid dynamics</subject><subject>Correlation</subject><subject>Energy</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Helicity</subject><subject>Interplanetary turbulence</subject><subject>Kinetic energy</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Perihelions</subject><subject>Propagation modes</subject><subject>Protons</subject><subject>Residual energy</subject><subject>Slow solar wind</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind electrons</subject><subject>Turbulence</subject><subject>Turbulent energy</subject><subject>Variation</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7uXQZEULBOmkfbLGVwVBiZwnQfkiaVjrWpN63gv7dDRTfi6sLlfPdxEDqPyS3LeLqIBcsizhKx0EZkgh6g2U_rEM0ISdKIEC6P0UkIO0JIKpicoW0xgBka15YOF6Db0Hno8bO3rqnbF6xbi1c1hB5vwNQ9zjW8OsBb32jAOXjj8FW-za_xxgQHH7qvfRtO0VGlm-DOvuscFav7YvkYrTcPT8u7dVRynvQR1xWhiawkI9YwJy0VtEytk4xmpEws06mMy_EZSjnVcSaNqZiRVoqRSmM2RxfT2A78--BCr3Z-gHbcqCgTaUJiltCRIhNVgg8BXKU6qN80fKqYqL05tdek9prUZG6M3EyR2ne_M__BL__Adbcb7-CJomNMdbZiXyqyetM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Adhikari, L.</creator><creator>Zank, G. P.</creator><creator>Zhao, L.-L.</creator><creator>Kasper, J. C.</creator><creator>Korreck, K. E.</creator><creator>Stevens, M.</creator><creator>Case, A. W.</creator><creator>Whittlesey, P.</creator><creator>Larson, D.</creator><creator>Livi, R.</creator><creator>Klein, K. G.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-3520-4041</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0001-6095-2490</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid></search><sort><creationdate>20200201</creationdate><title>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</title><author>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Kasper, J. C. ; Korreck, K. E. ; Stevens, M. ; Case, A. W. ; Whittlesey, P. ; Larson, D. ; Livi, R. ; Klein, K. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Correlation</topic><topic>Energy</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Helicity</topic><topic>Interplanetary turbulence</topic><topic>Kinetic energy</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Perihelions</topic><topic>Propagation modes</topic><topic>Protons</topic><topic>Residual energy</topic><topic>Slow solar wind</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind electrons</topic><topic>Turbulence</topic><topic>Turbulent energy</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Korreck, K. E.</creatorcontrib><creatorcontrib>Stevens, M.</creatorcontrib><creatorcontrib>Case, A. W.</creatorcontrib><creatorcontrib>Whittlesey, P.</creatorcontrib><creatorcontrib>Larson, D.</creatorcontrib><creatorcontrib>Livi, R.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adhikari, L.</au><au>Zank, G. P.</au><au>Zhao, L.-L.</au><au>Kasper, J. C.</au><au>Korreck, K. E.</au><au>Stevens, M.</au><au>Case, A. W.</au><au>Whittlesey, P.</au><au>Larson, D.</au><au>Livi, R.</au><au>Klein, K. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>246</volume><issue>2</issue><spage>38</spage><pages>38-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ab5852</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-3520-4041</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0001-6095-2490</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0067-0049 |
ispartof | The Astrophysical journal. Supplement series, 2020-02, Vol.246 (2), p.38 |
issn | 0067-0049 1538-4365 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4365_ab5852 |
source | Institute of Physics Open Access Journal Titles |
subjects | Computational fluid dynamics Correlation Energy Evolution Fluid flow Helicity Interplanetary turbulence Kinetic energy Magnetohydrodynamic turbulence Perihelions Propagation modes Protons Residual energy Slow solar wind Solar probes Solar wind Solar wind electrons Turbulence Turbulent energy Variation |
title | Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20Transport%20Modeling%20and%20First%20Orbit%20Parker%20Solar%20Probe%20(PSP)%20Observations&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Adhikari,%20L.&rft.date=2020-02-01&rft.volume=246&rft.issue=2&rft.spage=38&rft.pages=38-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ab5852&rft_dat=%3Cproquest_O3W%3E2357601362%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357601362&rft_id=info:pmid/&rfr_iscdi=true |