Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations

The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2020-02, Vol.246 (2), p.38
Hauptverfasser: Adhikari, L., Zank, G. P., Zhao, L.-L., Kasper, J. C., Korreck, K. E., Stevens, M., Case, A. W., Whittlesey, P., Larson, D., Livi, R., Klein, K. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 38
container_title The Astrophysical journal. Supplement series
container_volume 246
creator Adhikari, L.
Zank, G. P.
Zhao, L.-L.
Kasper, J. C.
Korreck, K. E.
Stevens, M.
Case, A. W.
Whittlesey, P.
Larson, D.
Livi, R.
Klein, K. G.
description The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy.
doi_str_mv 10.3847/1538-4365/ab5852
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4365_ab5852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357601362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7uXQZEULBOmkfbLGVwVBiZwnQfkiaVjrWpN63gv7dDRTfi6sLlfPdxEDqPyS3LeLqIBcsizhKx0EZkgh6g2U_rEM0ISdKIEC6P0UkIO0JIKpicoW0xgBka15YOF6Db0Hno8bO3rqnbF6xbi1c1hB5vwNQ9zjW8OsBb32jAOXjj8FW-za_xxgQHH7qvfRtO0VGlm-DOvuscFav7YvkYrTcPT8u7dVRynvQR1xWhiawkI9YwJy0VtEytk4xmpEws06mMy_EZSjnVcSaNqZiRVoqRSmM2RxfT2A78--BCr3Z-gHbcqCgTaUJiltCRIhNVgg8BXKU6qN80fKqYqL05tdek9prUZG6M3EyR2ne_M__BL__Adbcb7-CJomNMdbZiXyqyetM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357601362</pqid></control><display><type>article</type><title>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</title><source>Institute of Physics Open Access Journal Titles</source><creator>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Kasper, J. C. ; Korreck, K. E. ; Stevens, M. ; Case, A. W. ; Whittlesey, P. ; Larson, D. ; Livi, R. ; Klein, K. G.</creator><creatorcontrib>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Kasper, J. C. ; Korreck, K. E. ; Stevens, M. ; Case, A. W. ; Whittlesey, P. ; Larson, D. ; Livi, R. ; Klein, K. G.</creatorcontrib><description>The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ab5852</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Computational fluid dynamics ; Correlation ; Energy ; Evolution ; Fluid flow ; Helicity ; Interplanetary turbulence ; Kinetic energy ; Magnetohydrodynamic turbulence ; Perihelions ; Propagation modes ; Protons ; Residual energy ; Slow solar wind ; Solar probes ; Solar wind ; Solar wind electrons ; Turbulence ; Turbulent energy ; Variation</subject><ispartof>The Astrophysical journal. Supplement series, 2020-02, Vol.246 (2), p.38</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</citedby><cites>FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</cites><orcidid>0000-0002-4299-0490 ; 0000-0003-1549-5256 ; 0000-0002-3520-4041 ; 0000-0002-4642-6192 ; 0000-0002-7728-0085 ; 0000-0002-7077-930X ; 0000-0001-6095-2490 ; 0000-0001-6038-1923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab5852/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab5852$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Korreck, K. E.</creatorcontrib><creatorcontrib>Stevens, M.</creatorcontrib><creatorcontrib>Case, A. W.</creatorcontrib><creatorcontrib>Whittlesey, P.</creatorcontrib><creatorcontrib>Larson, D.</creatorcontrib><creatorcontrib>Livi, R.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><title>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy.</description><subject>Computational fluid dynamics</subject><subject>Correlation</subject><subject>Energy</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Helicity</subject><subject>Interplanetary turbulence</subject><subject>Kinetic energy</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Perihelions</subject><subject>Propagation modes</subject><subject>Protons</subject><subject>Residual energy</subject><subject>Slow solar wind</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind electrons</subject><subject>Turbulence</subject><subject>Turbulent energy</subject><subject>Variation</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7uXQZEULBOmkfbLGVwVBiZwnQfkiaVjrWpN63gv7dDRTfi6sLlfPdxEDqPyS3LeLqIBcsizhKx0EZkgh6g2U_rEM0ISdKIEC6P0UkIO0JIKpicoW0xgBka15YOF6Db0Hno8bO3rqnbF6xbi1c1hB5vwNQ9zjW8OsBb32jAOXjj8FW-za_xxgQHH7qvfRtO0VGlm-DOvuscFav7YvkYrTcPT8u7dVRynvQR1xWhiawkI9YwJy0VtEytk4xmpEws06mMy_EZSjnVcSaNqZiRVoqRSmM2RxfT2A78--BCr3Z-gHbcqCgTaUJiltCRIhNVgg8BXKU6qN80fKqYqL05tdek9prUZG6M3EyR2ne_M__BL__Adbcb7-CJomNMdbZiXyqyetM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Adhikari, L.</creator><creator>Zank, G. P.</creator><creator>Zhao, L.-L.</creator><creator>Kasper, J. C.</creator><creator>Korreck, K. E.</creator><creator>Stevens, M.</creator><creator>Case, A. W.</creator><creator>Whittlesey, P.</creator><creator>Larson, D.</creator><creator>Livi, R.</creator><creator>Klein, K. G.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-3520-4041</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0001-6095-2490</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid></search><sort><creationdate>20200201</creationdate><title>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</title><author>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L. ; Kasper, J. C. ; Korreck, K. E. ; Stevens, M. ; Case, A. W. ; Whittlesey, P. ; Larson, D. ; Livi, R. ; Klein, K. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4af0269f930db3e9d252c7de93280c6d3a791cb582242a189bbf3b9d95c7d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Correlation</topic><topic>Energy</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Helicity</topic><topic>Interplanetary turbulence</topic><topic>Kinetic energy</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Perihelions</topic><topic>Propagation modes</topic><topic>Protons</topic><topic>Residual energy</topic><topic>Slow solar wind</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind electrons</topic><topic>Turbulence</topic><topic>Turbulent energy</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Korreck, K. E.</creatorcontrib><creatorcontrib>Stevens, M.</creatorcontrib><creatorcontrib>Case, A. W.</creatorcontrib><creatorcontrib>Whittlesey, P.</creatorcontrib><creatorcontrib>Larson, D.</creatorcontrib><creatorcontrib>Livi, R.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adhikari, L.</au><au>Zank, G. P.</au><au>Zhao, L.-L.</au><au>Kasper, J. C.</au><au>Korreck, K. E.</au><au>Stevens, M.</au><au>Case, A. W.</au><au>Whittlesey, P.</au><au>Larson, D.</au><au>Livi, R.</au><au>Klein, K. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>246</volume><issue>2</issue><spage>38</spage><pages>38-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R ). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R . The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ab5852</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-3520-4041</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0001-6095-2490</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2020-02, Vol.246 (2), p.38
issn 0067-0049
1538-4365
language eng
recordid cdi_iop_journals_10_3847_1538_4365_ab5852
source Institute of Physics Open Access Journal Titles
subjects Computational fluid dynamics
Correlation
Energy
Evolution
Fluid flow
Helicity
Interplanetary turbulence
Kinetic energy
Magnetohydrodynamic turbulence
Perihelions
Propagation modes
Protons
Residual energy
Slow solar wind
Solar probes
Solar wind
Solar wind electrons
Turbulence
Turbulent energy
Variation
title Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20Transport%20Modeling%20and%20First%20Orbit%20Parker%20Solar%20Probe%20(PSP)%20Observations&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Adhikari,%20L.&rft.date=2020-02-01&rft.volume=246&rft.issue=2&rft.spage=38&rft.pages=38-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ab5852&rft_dat=%3Cproquest_O3W%3E2357601362%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357601362&rft_id=info:pmid/&rfr_iscdi=true