Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy

Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2019-04, Vol.241 (2), p.27
Hauptverfasser: Ashton, Gregory, Hübner, Moritz, Lasky, Paul D., Talbot, Colm, Ackley, Kendall, Biscoveanu, Sylvia, Chu, Qi, Divakarla, Atul, Easter, Paul J., Goncharov, Boris, Vivanco, Francisco Hernandez, Harms, Jan, Lower, Marcus E., Meadors, Grant D., Melchor, Denyz, Payne, Ethan, Pitkin, Matthew D., Powell, Jade, Sarin, Nikhil, Smith, Rory J. E., Thrane, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 27
container_title The Astrophysical journal. Supplement series
container_volume 241
creator Ashton, Gregory
Hübner, Moritz
Lasky, Paul D.
Talbot, Colm
Ackley, Kendall
Biscoveanu, Sylvia
Chu, Qi
Divakarla, Atul
Easter, Paul J.
Goncharov, Boris
Vivanco, Francisco Hernandez
Harms, Jan
Lower, Marcus E.
Meadors, Grant D.
Melchor, Denyz
Payne, Ethan
Pitkin, Matthew D.
Powell, Jade
Sarin, Nikhil
Smith, Rory J. E.
Thrane, Eric
description Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby. This Python code provides expert-level parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors. Bilby has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an example in which we infer the shape of the black hole mass distribution from an ensemble of observations of binary black hole mergers.
doi_str_mv 10.3847/1538-4365/ab06fc
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4365_ab06fc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357604602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-c9568efea8e2a2c06e1577ac0db42916a20d516ee509e490028f4d91840ee4c03</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwGvxr22Sdp620TnYCCIO4c0fYGMrplJN-l_b0dFT54ePL7fj_c-Qm4TeMgKns8SkRWMZ1LMdAXSmjMy-V2dkwmAzBkALy_JVYxbAMhFVk7I-8I1Vf9I53QTMTAbHLZ109OF7jE63dJVazFga5CuXRV06Kn1gS6DPrpOd863umFf-oh0HrvgW7_rr8mF1U3Em585JZuX54-nV7Z-W66e5mtmMgEdM6WQBVrUBaY6NSAxEXmuDdQVT8tE6hRqkUhEASXyEiAtLK_LpOCAyA1kU3I39u6D_zxg7NTWH8JwT1RpJnIJXEI6UDBSJvgYA1q1D243_KESUCdz6qRJnTSp0dwQuR8jzu__Ov_FvwHilW80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357604602</pqid></control><display><type>article</type><title>Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy</title><source>IOP Publishing Free Content</source><creator>Ashton, Gregory ; Hübner, Moritz ; Lasky, Paul D. ; Talbot, Colm ; Ackley, Kendall ; Biscoveanu, Sylvia ; Chu, Qi ; Divakarla, Atul ; Easter, Paul J. ; Goncharov, Boris ; Vivanco, Francisco Hernandez ; Harms, Jan ; Lower, Marcus E. ; Meadors, Grant D. ; Melchor, Denyz ; Payne, Ethan ; Pitkin, Matthew D. ; Powell, Jade ; Sarin, Nikhil ; Smith, Rory J. E. ; Thrane, Eric</creator><creatorcontrib>Ashton, Gregory ; Hübner, Moritz ; Lasky, Paul D. ; Talbot, Colm ; Ackley, Kendall ; Biscoveanu, Sylvia ; Chu, Qi ; Divakarla, Atul ; Easter, Paul J. ; Goncharov, Boris ; Vivanco, Francisco Hernandez ; Harms, Jan ; Lower, Marcus E. ; Meadors, Grant D. ; Melchor, Denyz ; Payne, Ethan ; Pitkin, Matthew D. ; Powell, Jade ; Sarin, Nikhil ; Smith, Rory J. E. ; Thrane, Eric</creatorcontrib><description>Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby. This Python code provides expert-level parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors. Bilby has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an example in which we infer the shape of the black hole mass distribution from an ensemble of observations of binary black hole mergers.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ab06fc</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Astronomy ; Bayesian analysis ; Binary stars ; Black holes ; Computer simulation ; Gravitation ; Gravitational waves ; Mass distribution ; methods: data analysis ; methods: statistical ; Neutron stars ; Parameter estimation ; Population studies ; stars: black holes ; stars: neutron ; Statistical inference ; Stellar evolution ; Supernova remnants ; Supernovae</subject><ispartof>The Astrophysical journal. Supplement series, 2019-04, Vol.241 (2), p.27</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-c9568efea8e2a2c06e1577ac0db42916a20d516ee509e490028f4d91840ee4c03</citedby><cites>FETCH-LOGICAL-c350t-c9568efea8e2a2c06e1577ac0db42916a20d516ee509e490028f4d91840ee4c03</cites><orcidid>0000-0003-3763-1386 ; 0000-0002-8648-0767 ; 0000-0003-2053-5582 ; 0000-0001-9208-0009 ; 0000-0003-4548-526X ; 0000-0003-2700-1030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab06fc/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab06fc$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Ashton, Gregory</creatorcontrib><creatorcontrib>Hübner, Moritz</creatorcontrib><creatorcontrib>Lasky, Paul D.</creatorcontrib><creatorcontrib>Talbot, Colm</creatorcontrib><creatorcontrib>Ackley, Kendall</creatorcontrib><creatorcontrib>Biscoveanu, Sylvia</creatorcontrib><creatorcontrib>Chu, Qi</creatorcontrib><creatorcontrib>Divakarla, Atul</creatorcontrib><creatorcontrib>Easter, Paul J.</creatorcontrib><creatorcontrib>Goncharov, Boris</creatorcontrib><creatorcontrib>Vivanco, Francisco Hernandez</creatorcontrib><creatorcontrib>Harms, Jan</creatorcontrib><creatorcontrib>Lower, Marcus E.</creatorcontrib><creatorcontrib>Meadors, Grant D.</creatorcontrib><creatorcontrib>Melchor, Denyz</creatorcontrib><creatorcontrib>Payne, Ethan</creatorcontrib><creatorcontrib>Pitkin, Matthew D.</creatorcontrib><creatorcontrib>Powell, Jade</creatorcontrib><creatorcontrib>Sarin, Nikhil</creatorcontrib><creatorcontrib>Smith, Rory J. E.</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><title>Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby. This Python code provides expert-level parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors. Bilby has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an example in which we infer the shape of the black hole mass distribution from an ensemble of observations of binary black hole mergers.</description><subject>Astronomy</subject><subject>Bayesian analysis</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Computer simulation</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Mass distribution</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>Neutron stars</subject><subject>Parameter estimation</subject><subject>Population studies</subject><subject>stars: black holes</subject><subject>stars: neutron</subject><subject>Statistical inference</subject><subject>Stellar evolution</subject><subject>Supernova remnants</subject><subject>Supernovae</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwGvxr22Sdp620TnYCCIO4c0fYGMrplJN-l_b0dFT54ePL7fj_c-Qm4TeMgKns8SkRWMZ1LMdAXSmjMy-V2dkwmAzBkALy_JVYxbAMhFVk7I-8I1Vf9I53QTMTAbHLZ109OF7jE63dJVazFga5CuXRV06Kn1gS6DPrpOd863umFf-oh0HrvgW7_rr8mF1U3Em585JZuX54-nV7Z-W66e5mtmMgEdM6WQBVrUBaY6NSAxEXmuDdQVT8tE6hRqkUhEASXyEiAtLK_LpOCAyA1kU3I39u6D_zxg7NTWH8JwT1RpJnIJXEI6UDBSJvgYA1q1D243_KESUCdz6qRJnTSp0dwQuR8jzu__Ov_FvwHilW80</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ashton, Gregory</creator><creator>Hübner, Moritz</creator><creator>Lasky, Paul D.</creator><creator>Talbot, Colm</creator><creator>Ackley, Kendall</creator><creator>Biscoveanu, Sylvia</creator><creator>Chu, Qi</creator><creator>Divakarla, Atul</creator><creator>Easter, Paul J.</creator><creator>Goncharov, Boris</creator><creator>Vivanco, Francisco Hernandez</creator><creator>Harms, Jan</creator><creator>Lower, Marcus E.</creator><creator>Meadors, Grant D.</creator><creator>Melchor, Denyz</creator><creator>Payne, Ethan</creator><creator>Pitkin, Matthew D.</creator><creator>Powell, Jade</creator><creator>Sarin, Nikhil</creator><creator>Smith, Rory J. E.</creator><creator>Thrane, Eric</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3763-1386</orcidid><orcidid>https://orcid.org/0000-0002-8648-0767</orcidid><orcidid>https://orcid.org/0000-0003-2053-5582</orcidid><orcidid>https://orcid.org/0000-0001-9208-0009</orcidid><orcidid>https://orcid.org/0000-0003-4548-526X</orcidid><orcidid>https://orcid.org/0000-0003-2700-1030</orcidid></search><sort><creationdate>20190401</creationdate><title>Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy</title><author>Ashton, Gregory ; Hübner, Moritz ; Lasky, Paul D. ; Talbot, Colm ; Ackley, Kendall ; Biscoveanu, Sylvia ; Chu, Qi ; Divakarla, Atul ; Easter, Paul J. ; Goncharov, Boris ; Vivanco, Francisco Hernandez ; Harms, Jan ; Lower, Marcus E. ; Meadors, Grant D. ; Melchor, Denyz ; Payne, Ethan ; Pitkin, Matthew D. ; Powell, Jade ; Sarin, Nikhil ; Smith, Rory J. E. ; Thrane, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-c9568efea8e2a2c06e1577ac0db42916a20d516ee509e490028f4d91840ee4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>Bayesian analysis</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Computer simulation</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Mass distribution</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>Neutron stars</topic><topic>Parameter estimation</topic><topic>Population studies</topic><topic>stars: black holes</topic><topic>stars: neutron</topic><topic>Statistical inference</topic><topic>Stellar evolution</topic><topic>Supernova remnants</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashton, Gregory</creatorcontrib><creatorcontrib>Hübner, Moritz</creatorcontrib><creatorcontrib>Lasky, Paul D.</creatorcontrib><creatorcontrib>Talbot, Colm</creatorcontrib><creatorcontrib>Ackley, Kendall</creatorcontrib><creatorcontrib>Biscoveanu, Sylvia</creatorcontrib><creatorcontrib>Chu, Qi</creatorcontrib><creatorcontrib>Divakarla, Atul</creatorcontrib><creatorcontrib>Easter, Paul J.</creatorcontrib><creatorcontrib>Goncharov, Boris</creatorcontrib><creatorcontrib>Vivanco, Francisco Hernandez</creatorcontrib><creatorcontrib>Harms, Jan</creatorcontrib><creatorcontrib>Lower, Marcus E.</creatorcontrib><creatorcontrib>Meadors, Grant D.</creatorcontrib><creatorcontrib>Melchor, Denyz</creatorcontrib><creatorcontrib>Payne, Ethan</creatorcontrib><creatorcontrib>Pitkin, Matthew D.</creatorcontrib><creatorcontrib>Powell, Jade</creatorcontrib><creatorcontrib>Sarin, Nikhil</creatorcontrib><creatorcontrib>Smith, Rory J. E.</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ashton, Gregory</au><au>Hübner, Moritz</au><au>Lasky, Paul D.</au><au>Talbot, Colm</au><au>Ackley, Kendall</au><au>Biscoveanu, Sylvia</au><au>Chu, Qi</au><au>Divakarla, Atul</au><au>Easter, Paul J.</au><au>Goncharov, Boris</au><au>Vivanco, Francisco Hernandez</au><au>Harms, Jan</au><au>Lower, Marcus E.</au><au>Meadors, Grant D.</au><au>Melchor, Denyz</au><au>Payne, Ethan</au><au>Pitkin, Matthew D.</au><au>Powell, Jade</au><au>Sarin, Nikhil</au><au>Smith, Rory J. E.</au><au>Thrane, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>241</volume><issue>2</issue><spage>27</spage><pages>27-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby. This Python code provides expert-level parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors. Bilby has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an example in which we infer the shape of the black hole mass distribution from an ensemble of observations of binary black hole mergers.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ab06fc</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3763-1386</orcidid><orcidid>https://orcid.org/0000-0002-8648-0767</orcidid><orcidid>https://orcid.org/0000-0003-2053-5582</orcidid><orcidid>https://orcid.org/0000-0001-9208-0009</orcidid><orcidid>https://orcid.org/0000-0003-4548-526X</orcidid><orcidid>https://orcid.org/0000-0003-2700-1030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2019-04, Vol.241 (2), p.27
issn 0067-0049
1538-4365
language eng
recordid cdi_iop_journals_10_3847_1538_4365_ab06fc
source IOP Publishing Free Content
subjects Astronomy
Bayesian analysis
Binary stars
Black holes
Computer simulation
Gravitation
Gravitational waves
Mass distribution
methods: data analysis
methods: statistical
Neutron stars
Parameter estimation
Population studies
stars: black holes
stars: neutron
Statistical inference
Stellar evolution
Supernova remnants
Supernovae
title Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilby:%20A%20User-friendly%20Bayesian%20Inference%20Library%20for%20Gravitational-wave%20Astronomy&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Ashton,%20Gregory&rft.date=2019-04-01&rft.volume=241&rft.issue=2&rft.spage=27&rft.pages=27-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ab06fc&rft_dat=%3Cproquest_O3W%3E2357604602%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357604602&rft_id=info:pmid/&rfr_iscdi=true