Far-side Active Regions Based on Helioseismic and EUV Measurements: A New Data Set for Heliospheric Machine Learning Advancements

Active Regions (ARs) are regions of strong magnetic flux in the solar atmosphere. Understanding the global evolution of ARs is critical for solar magnetism as well as for accurate space-weather forecasting. We present the first far-side AR data set based on EUV observation and helioseismic measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-12, Vol.977 (1), p.85
Hauptverfasser: Hamada, Amr, Jain, Kiran, Lindsey, Charles, Creelman, Mitchell, Oien, Niles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 85
container_title The Astrophysical journal
container_volume 977
creator Hamada, Amr
Jain, Kiran
Lindsey, Charles
Creelman, Mitchell
Oien, Niles
description Active Regions (ARs) are regions of strong magnetic flux in the solar atmosphere. Understanding the global evolution of ARs is critical for solar magnetism as well as for accurate space-weather forecasting. We present the first far-side AR data set based on EUV observation and helioseismic measurements. For the EUV observations, we use synchronic maps at 304 Å comprised of observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Solar TErrestrial RElations Observatory/Extreme UltraViolet Imager, in heliocentric orbit with direct vantages into the Sun’s far hemisphere. We used the brightening of the solar transition region in EUV/304 Å maps as a proxy for the magnetic regions. For the far-side helioseismic measurements, we used seismic phase-shift maps of the Sun’s far hemisphere, computed from helioseismic Dopplergrams observed by NSO/Global Oscillations Network Group (GONG). In this study, we present the first global EUV AR data set of the whole Sun, providing several basic parameters, such as location, area, tilt angle, EUV brightness, and latitudinal/longitudinal extents of the identified ARs. We also present a similar data set for the far-side GONG ARs where the helioseismic phase shift parameters are included. Helioseismic far-side GONG ARs are examined, and their success at predicting strong ARs is assessed. We discuss the temporal and spatial evolution for the EUV AR signatures and far-side GONG AR signatures during the ascending and maximum phases of Solar Cycle 24 (2010 May–2016 May). We examine the correlation between the helioseismic signatures and the respective EUV source distributions in the Sun’s far hemisphere. We present the first far-side AR butterfly diagram based on helioseismic measurements.
doi_str_mv 10.3847/1538-4357/ad8636
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ad8636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b6c88c9844d24f6bb8196b7bee4bdc2a</doaj_id><sourcerecordid>3141075069</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1961-42bc456f1b2720242d7eee7f4f58aa28e371c53838d91bc491b86a440391c8d43</originalsourceid><addsrcrecordid>eNptkc1v1DAQxSMEEkvpnaMlOBLqr8QOt6W0tNIWJEoRN2tiT7Ze7drBzhb1yH-Ol1Rw6WVGM_q9pxm9qnrF6DuhpTphjdC1FI06Aadb0T6pFv9WT6sFpVTWrVA_nlcvct4cRt51i-r3OaQ6e4dkaSd_h-Qrrn0MmXyAjI7EQC5w62NGn3feEgiOnN18J1cIeZ9wh2HK78mSfMZf5CNMQK5xIkNMD6rxFlNRXYG99QHJCiEFH9Zk6e4g2Fn-sno2wDbj8UM_qm7Oz76dXtSrL58uT5er2rGuZbXkvZVNO7CeK0655E4hohrk0GgArlEoZsvDQruOFbQU3YKUVHTMaifFUXU5-7oIGzMmv4N0byJ483cR09pAmrzdoulbq7XttJSOy6Hte11O6FWPKHtnORSv17PXmOLPPebJbOI-hXK-EUwyqhradoV6O1M-jv8BRs0hMHNIxxzSMXNgBX_zCA7jxnSq4EY3ZnSD-AO2FZSI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141075069</pqid></control><display><type>article</type><title>Far-side Active Regions Based on Helioseismic and EUV Measurements: A New Data Set for Heliospheric Machine Learning Advancements</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hamada, Amr ; Jain, Kiran ; Lindsey, Charles ; Creelman, Mitchell ; Oien, Niles</creator><creatorcontrib>Hamada, Amr ; Jain, Kiran ; Lindsey, Charles ; Creelman, Mitchell ; Oien, Niles</creatorcontrib><description>Active Regions (ARs) are regions of strong magnetic flux in the solar atmosphere. Understanding the global evolution of ARs is critical for solar magnetism as well as for accurate space-weather forecasting. We present the first far-side AR data set based on EUV observation and helioseismic measurements. For the EUV observations, we use synchronic maps at 304 Å comprised of observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Solar TErrestrial RElations Observatory/Extreme UltraViolet Imager, in heliocentric orbit with direct vantages into the Sun’s far hemisphere. We used the brightening of the solar transition region in EUV/304 Å maps as a proxy for the magnetic regions. For the far-side helioseismic measurements, we used seismic phase-shift maps of the Sun’s far hemisphere, computed from helioseismic Dopplergrams observed by NSO/Global Oscillations Network Group (GONG). In this study, we present the first global EUV AR data set of the whole Sun, providing several basic parameters, such as location, area, tilt angle, EUV brightness, and latitudinal/longitudinal extents of the identified ARs. We also present a similar data set for the far-side GONG ARs where the helioseismic phase shift parameters are included. Helioseismic far-side GONG ARs are examined, and their success at predicting strong ARs is assessed. We discuss the temporal and spatial evolution for the EUV AR signatures and far-side GONG AR signatures during the ascending and maximum phases of Solar Cycle 24 (2010 May–2016 May). We examine the correlation between the helioseismic signatures and the respective EUV source distributions in the Sun’s far hemisphere. We present the first far-side AR butterfly diagram based on helioseismic measurements.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad8636</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Brightening ; Datasets ; Evolution ; Helioseismology ; Machine learning ; Magnetic flux ; Magnetism ; Observatories ; Orbital mechanics ; Parameter identification ; Phase shift ; Signatures ; Solar active regions ; Solar activity ; Solar atmosphere ; Solar cycle ; Solar extreme ultraviolet emission ; Solar magnetism ; Solar observatories ; Solar orbits ; Solar oscillations ; Solar physics ; Solar transition region ; Space weather ; Sun ; Ultraviolet imagery ; Weather forecasting</subject><ispartof>The Astrophysical journal, 2024-12, Vol.977 (1), p.85</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-5113-2757 ; 0000-0002-8900-8011 ; 0009-0008-2557-3848 ; 0000-0002-5658-5541 ; 0000-0002-1905-1639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad8636/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Hamada, Amr</creatorcontrib><creatorcontrib>Jain, Kiran</creatorcontrib><creatorcontrib>Lindsey, Charles</creatorcontrib><creatorcontrib>Creelman, Mitchell</creatorcontrib><creatorcontrib>Oien, Niles</creatorcontrib><title>Far-side Active Regions Based on Helioseismic and EUV Measurements: A New Data Set for Heliospheric Machine Learning Advancements</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Active Regions (ARs) are regions of strong magnetic flux in the solar atmosphere. Understanding the global evolution of ARs is critical for solar magnetism as well as for accurate space-weather forecasting. We present the first far-side AR data set based on EUV observation and helioseismic measurements. For the EUV observations, we use synchronic maps at 304 Å comprised of observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Solar TErrestrial RElations Observatory/Extreme UltraViolet Imager, in heliocentric orbit with direct vantages into the Sun’s far hemisphere. We used the brightening of the solar transition region in EUV/304 Å maps as a proxy for the magnetic regions. For the far-side helioseismic measurements, we used seismic phase-shift maps of the Sun’s far hemisphere, computed from helioseismic Dopplergrams observed by NSO/Global Oscillations Network Group (GONG). In this study, we present the first global EUV AR data set of the whole Sun, providing several basic parameters, such as location, area, tilt angle, EUV brightness, and latitudinal/longitudinal extents of the identified ARs. We also present a similar data set for the far-side GONG ARs where the helioseismic phase shift parameters are included. Helioseismic far-side GONG ARs are examined, and their success at predicting strong ARs is assessed. We discuss the temporal and spatial evolution for the EUV AR signatures and far-side GONG AR signatures during the ascending and maximum phases of Solar Cycle 24 (2010 May–2016 May). We examine the correlation between the helioseismic signatures and the respective EUV source distributions in the Sun’s far hemisphere. We present the first far-side AR butterfly diagram based on helioseismic measurements.</description><subject>Brightening</subject><subject>Datasets</subject><subject>Evolution</subject><subject>Helioseismology</subject><subject>Machine learning</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Observatories</subject><subject>Orbital mechanics</subject><subject>Parameter identification</subject><subject>Phase shift</subject><subject>Signatures</subject><subject>Solar active regions</subject><subject>Solar activity</subject><subject>Solar atmosphere</subject><subject>Solar cycle</subject><subject>Solar extreme ultraviolet emission</subject><subject>Solar magnetism</subject><subject>Solar observatories</subject><subject>Solar orbits</subject><subject>Solar oscillations</subject><subject>Solar physics</subject><subject>Solar transition region</subject><subject>Space weather</subject><subject>Sun</subject><subject>Ultraviolet imagery</subject><subject>Weather forecasting</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNptkc1v1DAQxSMEEkvpnaMlOBLqr8QOt6W0tNIWJEoRN2tiT7Ze7drBzhb1yH-Ol1Rw6WVGM_q9pxm9qnrF6DuhpTphjdC1FI06Aadb0T6pFv9WT6sFpVTWrVA_nlcvct4cRt51i-r3OaQ6e4dkaSd_h-Qrrn0MmXyAjI7EQC5w62NGn3feEgiOnN18J1cIeZ9wh2HK78mSfMZf5CNMQK5xIkNMD6rxFlNRXYG99QHJCiEFH9Zk6e4g2Fn-sno2wDbj8UM_qm7Oz76dXtSrL58uT5er2rGuZbXkvZVNO7CeK0655E4hohrk0GgArlEoZsvDQruOFbQU3YKUVHTMaifFUXU5-7oIGzMmv4N0byJ483cR09pAmrzdoulbq7XttJSOy6Hte11O6FWPKHtnORSv17PXmOLPPebJbOI-hXK-EUwyqhradoV6O1M-jv8BRs0hMHNIxxzSMXNgBX_zCA7jxnSq4EY3ZnSD-AO2FZSI</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hamada, Amr</creator><creator>Jain, Kiran</creator><creator>Lindsey, Charles</creator><creator>Creelman, Mitchell</creator><creator>Oien, Niles</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-5113-2757</orcidid><orcidid>https://orcid.org/0000-0002-8900-8011</orcidid><orcidid>https://orcid.org/0009-0008-2557-3848</orcidid><orcidid>https://orcid.org/0000-0002-5658-5541</orcidid><orcidid>https://orcid.org/0000-0002-1905-1639</orcidid></search><sort><creationdate>20241201</creationdate><title>Far-side Active Regions Based on Helioseismic and EUV Measurements: A New Data Set for Heliospheric Machine Learning Advancements</title><author>Hamada, Amr ; Jain, Kiran ; Lindsey, Charles ; Creelman, Mitchell ; Oien, Niles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1961-42bc456f1b2720242d7eee7f4f58aa28e371c53838d91bc491b86a440391c8d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brightening</topic><topic>Datasets</topic><topic>Evolution</topic><topic>Helioseismology</topic><topic>Machine learning</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Observatories</topic><topic>Orbital mechanics</topic><topic>Parameter identification</topic><topic>Phase shift</topic><topic>Signatures</topic><topic>Solar active regions</topic><topic>Solar activity</topic><topic>Solar atmosphere</topic><topic>Solar cycle</topic><topic>Solar extreme ultraviolet emission</topic><topic>Solar magnetism</topic><topic>Solar observatories</topic><topic>Solar orbits</topic><topic>Solar oscillations</topic><topic>Solar physics</topic><topic>Solar transition region</topic><topic>Space weather</topic><topic>Sun</topic><topic>Ultraviolet imagery</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamada, Amr</creatorcontrib><creatorcontrib>Jain, Kiran</creatorcontrib><creatorcontrib>Lindsey, Charles</creatorcontrib><creatorcontrib>Creelman, Mitchell</creatorcontrib><creatorcontrib>Oien, Niles</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamada, Amr</au><au>Jain, Kiran</au><au>Lindsey, Charles</au><au>Creelman, Mitchell</au><au>Oien, Niles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Far-side Active Regions Based on Helioseismic and EUV Measurements: A New Data Set for Heliospheric Machine Learning Advancements</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>977</volume><issue>1</issue><spage>85</spage><pages>85-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Active Regions (ARs) are regions of strong magnetic flux in the solar atmosphere. Understanding the global evolution of ARs is critical for solar magnetism as well as for accurate space-weather forecasting. We present the first far-side AR data set based on EUV observation and helioseismic measurements. For the EUV observations, we use synchronic maps at 304 Å comprised of observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Solar TErrestrial RElations Observatory/Extreme UltraViolet Imager, in heliocentric orbit with direct vantages into the Sun’s far hemisphere. We used the brightening of the solar transition region in EUV/304 Å maps as a proxy for the magnetic regions. For the far-side helioseismic measurements, we used seismic phase-shift maps of the Sun’s far hemisphere, computed from helioseismic Dopplergrams observed by NSO/Global Oscillations Network Group (GONG). In this study, we present the first global EUV AR data set of the whole Sun, providing several basic parameters, such as location, area, tilt angle, EUV brightness, and latitudinal/longitudinal extents of the identified ARs. We also present a similar data set for the far-side GONG ARs where the helioseismic phase shift parameters are included. Helioseismic far-side GONG ARs are examined, and their success at predicting strong ARs is assessed. We discuss the temporal and spatial evolution for the EUV AR signatures and far-side GONG AR signatures during the ascending and maximum phases of Solar Cycle 24 (2010 May–2016 May). We examine the correlation between the helioseismic signatures and the respective EUV source distributions in the Sun’s far hemisphere. We present the first far-side AR butterfly diagram based on helioseismic measurements.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad8636</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0000-5113-2757</orcidid><orcidid>https://orcid.org/0000-0002-8900-8011</orcidid><orcidid>https://orcid.org/0009-0008-2557-3848</orcidid><orcidid>https://orcid.org/0000-0002-5658-5541</orcidid><orcidid>https://orcid.org/0000-0002-1905-1639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-12, Vol.977 (1), p.85
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ad8636
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Brightening
Datasets
Evolution
Helioseismology
Machine learning
Magnetic flux
Magnetism
Observatories
Orbital mechanics
Parameter identification
Phase shift
Signatures
Solar active regions
Solar activity
Solar atmosphere
Solar cycle
Solar extreme ultraviolet emission
Solar magnetism
Solar observatories
Solar orbits
Solar oscillations
Solar physics
Solar transition region
Space weather
Sun
Ultraviolet imagery
Weather forecasting
title Far-side Active Regions Based on Helioseismic and EUV Measurements: A New Data Set for Heliospheric Machine Learning Advancements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Far-side%20Active%20Regions%20Based%20on%20Helioseismic%20and%20EUV%20Measurements:%20A%20New%20Data%20Set%20for%20Heliospheric%20Machine%20Learning%20Advancements&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hamada,%20Amr&rft.date=2024-12-01&rft.volume=977&rft.issue=1&rft.spage=85&rft.pages=85-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad8636&rft_dat=%3Cproquest_iop_j%3E3141075069%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141075069&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b6c88c9844d24f6bb8196b7bee4bdc2a&rfr_iscdi=true