ÆSOPUS 2.1: Low-temperature Opacities Extended to High Pressure

We address the critical need for accurate Rosseland mean gas opacities in high-pressure environments, spanning temperatures from 100 K to 32,000 K. Current opacity tables from Wichita State University and Æ SOPUS 2.0 are limited to log ( R ) ≤ 1 , where R = ρ T 6 − 3 in units of g cm − 3 ( 10 6 K )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical Journal 2024-11, Vol.976 (1), p.39
Hauptverfasser: Marigo, Paola, Addari, Francesco, Bossini, Diego, Bressan, Alessandro, Costa, Guglielmo, Girardi, Léo, Pastorelli, Giada, Trabucchi, Michele, Volpato, Guglielmo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 39
container_title The Astrophysical Journal
container_volume 976
creator Marigo, Paola
Addari, Francesco
Bossini, Diego
Bressan, Alessandro
Costa, Guglielmo
Girardi, Léo
Pastorelli, Giada
Trabucchi, Michele
Volpato, Guglielmo
description We address the critical need for accurate Rosseland mean gas opacities in high-pressure environments, spanning temperatures from 100 K to 32,000 K. Current opacity tables from Wichita State University and Æ SOPUS 2.0 are limited to log ( R ) ≤ 1 , where R = ρ T 6 − 3 in units of g cm − 3 ( 10 6 K ) − 3 . This is insufficient for modeling very low-mass stars, brown dwarfs, and planets with atmospheres exhibiting higher densities and pressures ( log ( R ) > 1 ). Leveraging extensive databases such as ExoMol , ExoMolOP , MoLLIST , and HITEMP , we focus on expanding the Æ SOPUS opacity calculations to cover a broad range of pressure and density conditions ( − 8 ≤ log ( R ) ≤ + 6 ). We incorporate the thermal Doppler mechanism and microturbulence velocity. Pressure-broadening effects on molecular transitions, leading to Lorentzian or Voigt profiles, are explored in the context of atmospheric profiles for exoplanets, brown dwarfs, and low-mass stars. We also delve into the impact of electron degeneracy and nonideal effects, such as ionization potential depression under high-density conditions, emphasizing its notable influence on Rosseland mean opacities at temperatures exceeding 10,000 K. As a result, this study expands the Æ SOPUS public web interface for customized gas chemical mixtures, promoting flexibility in opacity calculations based on specific research needs. Additionally, precomputed opacity tables, inclusive of condensates, are provided. We present a preliminary application to evolutionary models for very low-mass stars.
doi_str_mv 10.3847/1538-4357/ad7b27
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ad7b27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8bb90004ddb3476486b3ee5239698426</doaj_id><sourcerecordid>3127650116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-99e1a5a03f77fc58042585296503c6c8a72ccf283a128304921ffc42a9205ddf3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMoWC97lwPuxLG5ThJXFlErFFqoBXchk8nYlLYZk6mXF_DFfDFnHKm4cJOQw3e-8PMDcILgBRGU9xEjIqWE8b4ueI75DuhtR7ugByGkaUb44z44iHHRPrGUPXD1-TEdT2bTBF-gy2TkX9PariobdL0JNhlX2rja2ZjcvNV2XdgiqX0ydE_zZBJsjA1zBPZKvYz2-Oc-BLPbm4frYToa391fD0apwRLXqZQWaaYhKTkvDRPN90wwLDMGicmM0BwbU2JBNGoOSCVGZWko1hJDVhQlOQT3nbfweqGq4FY6vCuvnfoe-PCkdKidWVol8ly2AYsiJ5RnVGQ5sZZhIjMpKM4a11nnmuvlH9VwMFJuHTcKUkGEIPIFNfBpB1fBP29srNXCb8K6yaoIwrwJgFCrhB1lgo8x2HLrRVC1Bam2DdW2obqCmpXzbsX56tf5L_4F4qGNOA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127650116</pqid></control><display><type>article</type><title>ÆSOPUS 2.1: Low-temperature Opacities Extended to High Pressure</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Marigo, Paola ; Addari, Francesco ; Bossini, Diego ; Bressan, Alessandro ; Costa, Guglielmo ; Girardi, Léo ; Pastorelli, Giada ; Trabucchi, Michele ; Volpato, Guglielmo</creator><creatorcontrib>Marigo, Paola ; Addari, Francesco ; Bossini, Diego ; Bressan, Alessandro ; Costa, Guglielmo ; Girardi, Léo ; Pastorelli, Giada ; Trabucchi, Michele ; Volpato, Guglielmo</creatorcontrib><description>We address the critical need for accurate Rosseland mean gas opacities in high-pressure environments, spanning temperatures from 100 K to 32,000 K. Current opacity tables from Wichita State University and Æ SOPUS 2.0 are limited to log ( R ) ≤ 1 , where R = ρ T 6 − 3 in units of g cm − 3 ( 10 6 K ) − 3 . This is insufficient for modeling very low-mass stars, brown dwarfs, and planets with atmospheres exhibiting higher densities and pressures ( log ( R ) &gt; 1 ). Leveraging extensive databases such as ExoMol , ExoMolOP , MoLLIST , and HITEMP , we focus on expanding the Æ SOPUS opacity calculations to cover a broad range of pressure and density conditions ( − 8 ≤ log ( R ) ≤ + 6 ). We incorporate the thermal Doppler mechanism and microturbulence velocity. Pressure-broadening effects on molecular transitions, leading to Lorentzian or Voigt profiles, are explored in the context of atmospheric profiles for exoplanets, brown dwarfs, and low-mass stars. We also delve into the impact of electron degeneracy and nonideal effects, such as ionization potential depression under high-density conditions, emphasizing its notable influence on Rosseland mean opacities at temperatures exceeding 10,000 K. As a result, this study expands the Æ SOPUS public web interface for customized gas chemical mixtures, promoting flexibility in opacity calculations based on specific research needs. Additionally, precomputed opacity tables, inclusive of condensates, are provided. We present a preliminary application to evolutionary models for very low-mass stars.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad7b27</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrochemistry ; Atmospheric pressure ; Brown dwarf stars ; Brown dwarfs ; Collisional broadening ; Density ; Exoplanets ; Extrasolar planets ; High pressure ; Ionization ; Ionization potentials ; Low mass stars ; Low temperature ; Opacity ; Planetary atmospheres ; Pressure effects ; Sciences of the Universe ; Stars ; Stellar atmospheric opacity ; Stellar evolution ; Tables (data)</subject><ispartof>The Astrophysical Journal, 2024-11, Vol.976 (1), p.39</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-99e1a5a03f77fc58042585296503c6c8a72ccf283a128304921ffc42a9205ddf3</cites><orcidid>0000-0002-3867-9966 ; 0000-0002-9300-7409 ; 0000-0002-6213-6988 ; 0000-0002-7922-8440 ; 0000-0002-6301-3269 ; 0000-0002-1429-2388 ; 0000-0002-8691-4940 ; 0000-0002-9480-8400 ; 0000-0002-9137-0773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad7b27/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2101,27923,27924,38889,53866</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04838839$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marigo, Paola</creatorcontrib><creatorcontrib>Addari, Francesco</creatorcontrib><creatorcontrib>Bossini, Diego</creatorcontrib><creatorcontrib>Bressan, Alessandro</creatorcontrib><creatorcontrib>Costa, Guglielmo</creatorcontrib><creatorcontrib>Girardi, Léo</creatorcontrib><creatorcontrib>Pastorelli, Giada</creatorcontrib><creatorcontrib>Trabucchi, Michele</creatorcontrib><creatorcontrib>Volpato, Guglielmo</creatorcontrib><title>ÆSOPUS 2.1: Low-temperature Opacities Extended to High Pressure</title><title>The Astrophysical Journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We address the critical need for accurate Rosseland mean gas opacities in high-pressure environments, spanning temperatures from 100 K to 32,000 K. Current opacity tables from Wichita State University and Æ SOPUS 2.0 are limited to log ( R ) ≤ 1 , where R = ρ T 6 − 3 in units of g cm − 3 ( 10 6 K ) − 3 . This is insufficient for modeling very low-mass stars, brown dwarfs, and planets with atmospheres exhibiting higher densities and pressures ( log ( R ) &gt; 1 ). Leveraging extensive databases such as ExoMol , ExoMolOP , MoLLIST , and HITEMP , we focus on expanding the Æ SOPUS opacity calculations to cover a broad range of pressure and density conditions ( − 8 ≤ log ( R ) ≤ + 6 ). We incorporate the thermal Doppler mechanism and microturbulence velocity. Pressure-broadening effects on molecular transitions, leading to Lorentzian or Voigt profiles, are explored in the context of atmospheric profiles for exoplanets, brown dwarfs, and low-mass stars. We also delve into the impact of electron degeneracy and nonideal effects, such as ionization potential depression under high-density conditions, emphasizing its notable influence on Rosseland mean opacities at temperatures exceeding 10,000 K. As a result, this study expands the Æ SOPUS public web interface for customized gas chemical mixtures, promoting flexibility in opacity calculations based on specific research needs. Additionally, precomputed opacity tables, inclusive of condensates, are provided. We present a preliminary application to evolutionary models for very low-mass stars.</description><subject>Astrochemistry</subject><subject>Atmospheric pressure</subject><subject>Brown dwarf stars</subject><subject>Brown dwarfs</subject><subject>Collisional broadening</subject><subject>Density</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>High pressure</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Low mass stars</subject><subject>Low temperature</subject><subject>Opacity</subject><subject>Planetary atmospheres</subject><subject>Pressure effects</subject><subject>Sciences of the Universe</subject><subject>Stars</subject><subject>Stellar atmospheric opacity</subject><subject>Stellar evolution</subject><subject>Tables (data)</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kctKAzEUhoMoWC97lwPuxLG5ThJXFlErFFqoBXchk8nYlLYZk6mXF_DFfDFnHKm4cJOQw3e-8PMDcILgBRGU9xEjIqWE8b4ueI75DuhtR7ugByGkaUb44z44iHHRPrGUPXD1-TEdT2bTBF-gy2TkX9PariobdL0JNhlX2rja2ZjcvNV2XdgiqX0ydE_zZBJsjA1zBPZKvYz2-Oc-BLPbm4frYToa391fD0apwRLXqZQWaaYhKTkvDRPN90wwLDMGicmM0BwbU2JBNGoOSCVGZWko1hJDVhQlOQT3nbfweqGq4FY6vCuvnfoe-PCkdKidWVol8ly2AYsiJ5RnVGQ5sZZhIjMpKM4a11nnmuvlH9VwMFJuHTcKUkGEIPIFNfBpB1fBP29srNXCb8K6yaoIwrwJgFCrhB1lgo8x2HLrRVC1Bam2DdW2obqCmpXzbsX56tf5L_4F4qGNOA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Marigo, Paola</creator><creator>Addari, Francesco</creator><creator>Bossini, Diego</creator><creator>Bressan, Alessandro</creator><creator>Costa, Guglielmo</creator><creator>Girardi, Léo</creator><creator>Pastorelli, Giada</creator><creator>Trabucchi, Michele</creator><creator>Volpato, Guglielmo</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3867-9966</orcidid><orcidid>https://orcid.org/0000-0002-9300-7409</orcidid><orcidid>https://orcid.org/0000-0002-6213-6988</orcidid><orcidid>https://orcid.org/0000-0002-7922-8440</orcidid><orcidid>https://orcid.org/0000-0002-6301-3269</orcidid><orcidid>https://orcid.org/0000-0002-1429-2388</orcidid><orcidid>https://orcid.org/0000-0002-8691-4940</orcidid><orcidid>https://orcid.org/0000-0002-9480-8400</orcidid><orcidid>https://orcid.org/0000-0002-9137-0773</orcidid></search><sort><creationdate>20241101</creationdate><title>ÆSOPUS 2.1: Low-temperature Opacities Extended to High Pressure</title><author>Marigo, Paola ; Addari, Francesco ; Bossini, Diego ; Bressan, Alessandro ; Costa, Guglielmo ; Girardi, Léo ; Pastorelli, Giada ; Trabucchi, Michele ; Volpato, Guglielmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-99e1a5a03f77fc58042585296503c6c8a72ccf283a128304921ffc42a9205ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrochemistry</topic><topic>Atmospheric pressure</topic><topic>Brown dwarf stars</topic><topic>Brown dwarfs</topic><topic>Collisional broadening</topic><topic>Density</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>High pressure</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Low mass stars</topic><topic>Low temperature</topic><topic>Opacity</topic><topic>Planetary atmospheres</topic><topic>Pressure effects</topic><topic>Sciences of the Universe</topic><topic>Stars</topic><topic>Stellar atmospheric opacity</topic><topic>Stellar evolution</topic><topic>Tables (data)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marigo, Paola</creatorcontrib><creatorcontrib>Addari, Francesco</creatorcontrib><creatorcontrib>Bossini, Diego</creatorcontrib><creatorcontrib>Bressan, Alessandro</creatorcontrib><creatorcontrib>Costa, Guglielmo</creatorcontrib><creatorcontrib>Girardi, Léo</creatorcontrib><creatorcontrib>Pastorelli, Giada</creatorcontrib><creatorcontrib>Trabucchi, Michele</creatorcontrib><creatorcontrib>Volpato, Guglielmo</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marigo, Paola</au><au>Addari, Francesco</au><au>Bossini, Diego</au><au>Bressan, Alessandro</au><au>Costa, Guglielmo</au><au>Girardi, Léo</au><au>Pastorelli, Giada</au><au>Trabucchi, Michele</au><au>Volpato, Guglielmo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ÆSOPUS 2.1: Low-temperature Opacities Extended to High Pressure</atitle><jtitle>The Astrophysical Journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>976</volume><issue>1</issue><spage>39</spage><pages>39-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We address the critical need for accurate Rosseland mean gas opacities in high-pressure environments, spanning temperatures from 100 K to 32,000 K. Current opacity tables from Wichita State University and Æ SOPUS 2.0 are limited to log ( R ) ≤ 1 , where R = ρ T 6 − 3 in units of g cm − 3 ( 10 6 K ) − 3 . This is insufficient for modeling very low-mass stars, brown dwarfs, and planets with atmospheres exhibiting higher densities and pressures ( log ( R ) &gt; 1 ). Leveraging extensive databases such as ExoMol , ExoMolOP , MoLLIST , and HITEMP , we focus on expanding the Æ SOPUS opacity calculations to cover a broad range of pressure and density conditions ( − 8 ≤ log ( R ) ≤ + 6 ). We incorporate the thermal Doppler mechanism and microturbulence velocity. Pressure-broadening effects on molecular transitions, leading to Lorentzian or Voigt profiles, are explored in the context of atmospheric profiles for exoplanets, brown dwarfs, and low-mass stars. We also delve into the impact of electron degeneracy and nonideal effects, such as ionization potential depression under high-density conditions, emphasizing its notable influence on Rosseland mean opacities at temperatures exceeding 10,000 K. As a result, this study expands the Æ SOPUS public web interface for customized gas chemical mixtures, promoting flexibility in opacity calculations based on specific research needs. Additionally, precomputed opacity tables, inclusive of condensates, are provided. We present a preliminary application to evolutionary models for very low-mass stars.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad7b27</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3867-9966</orcidid><orcidid>https://orcid.org/0000-0002-9300-7409</orcidid><orcidid>https://orcid.org/0000-0002-6213-6988</orcidid><orcidid>https://orcid.org/0000-0002-7922-8440</orcidid><orcidid>https://orcid.org/0000-0002-6301-3269</orcidid><orcidid>https://orcid.org/0000-0002-1429-2388</orcidid><orcidid>https://orcid.org/0000-0002-8691-4940</orcidid><orcidid>https://orcid.org/0000-0002-9480-8400</orcidid><orcidid>https://orcid.org/0000-0002-9137-0773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical Journal, 2024-11, Vol.976 (1), p.39
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ad7b27
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astrochemistry
Atmospheric pressure
Brown dwarf stars
Brown dwarfs
Collisional broadening
Density
Exoplanets
Extrasolar planets
High pressure
Ionization
Ionization potentials
Low mass stars
Low temperature
Opacity
Planetary atmospheres
Pressure effects
Sciences of the Universe
Stars
Stellar atmospheric opacity
Stellar evolution
Tables (data)
title ÆSOPUS 2.1: Low-temperature Opacities Extended to High Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%C3%86SOPUS%202.1:%20Low-temperature%20Opacities%20Extended%20to%20High%20Pressure&rft.jtitle=The%20Astrophysical%20Journal&rft.au=Marigo,%20Paola&rft.date=2024-11-01&rft.volume=976&rft.issue=1&rft.spage=39&rft.pages=39-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad7b27&rft_dat=%3Cproquest_iop_j%3E3127650116%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127650116&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8bb90004ddb3476486b3ee5239698426&rfr_iscdi=true