General Relativistic Radiation Magnetohydrodynamics Simulations of Precessing Tilted Super-Eddington Disks

We perform a three-dimensional general relativistic radiation magnetohydrodynamics simulation of a tilted super-Eddington accretion disk around a spinning black hole (BH). The disk, which tilts and twists as it approaches the BH, precesses while maintaining its shape. The gas is mainly ejected aroun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-09, Vol.973 (1), p.45
Hauptverfasser: Asahina, Yuta, Ohsuga, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 45
container_title The Astrophysical journal
container_volume 973
creator Asahina, Yuta
Ohsuga, Ken
description We perform a three-dimensional general relativistic radiation magnetohydrodynamics simulation of a tilted super-Eddington accretion disk around a spinning black hole (BH). The disk, which tilts and twists as it approaches the BH, precesses while maintaining its shape. The gas is mainly ejected around the rotation axis of the outer part of the disk rather than around the spin axis of the BH. The disk precession changes the ejection direction of the gas with time. The radiation energy is also released in approximately the same direction as the outflow, so the precession is expected to cause a quasiperiodic time variation of the observed luminosity. The timescale of the precession is about 10 s for a 10 M ⊙ BH and for the radial extent of a disk of several tens of gravitational radii, where M ⊙ is the solar mass. This timescale is consistent with the frequency of the low-frequency quasiperiodic oscillation (0.01–1 Hz) observed in some ultraluminous X-ray sources.
doi_str_mv 10.3847/1538-4357/ad6cd9
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ad6cd9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_90967f2d914945529e4dbc3bf7fccddc</doaj_id><sourcerecordid>3106448131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-fa39b74e805c0116a1ba39bb0a24fe2b86dfe231f52143f89e20055c8374fb413</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEEmNw51iJK2VJk37kiMYYk4ZA25C4RWk-RkbXjKRF2r8nXdE4cbL82n5s6wXgGsE7XJB8hFJcxASn-YjLTEh6AgZH6RQMIIQkznD-fg4uvN90aULpAGymqlaOV9FCVbwx38Y3RkQLLk3IbB0983WtGvuxl87Kfc23RvhoabZtdaj7yOro1SmhvDf1OlqZqlEyWrY75eKJlEFrAuXB-E9_Cc40r7y6-o1D8PY4WY2f4vnLdDa-n8ciXNTEmmNa5kQVMBUQoYyjslNKyBOiVVIWmQwBI50miGBdUJVAmKaiwDnRJUF4CGY9V1q-YTtnttztmeWGHQTr1oy78GWlGIU0y3UiKSKUpGlCFZGlwKXOtRBSisC66Vk7Z79a5Ru2sa2rw_kMI5gRUiDcbYR9l3DWe6f0cSuCrHOHdVawzgrWuxNGbvsRY3d_zH_bfwCwY5K5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106448131</pqid></control><display><type>article</type><title>General Relativistic Radiation Magnetohydrodynamics Simulations of Precessing Tilted Super-Eddington Disks</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Asahina, Yuta ; Ohsuga, Ken</creator><creatorcontrib>Asahina, Yuta ; Ohsuga, Ken</creatorcontrib><description>We perform a three-dimensional general relativistic radiation magnetohydrodynamics simulation of a tilted super-Eddington accretion disk around a spinning black hole (BH). The disk, which tilts and twists as it approaches the BH, precesses while maintaining its shape. The gas is mainly ejected around the rotation axis of the outer part of the disk rather than around the spin axis of the BH. The disk precession changes the ejection direction of the gas with time. The radiation energy is also released in approximately the same direction as the outflow, so the precession is expected to cause a quasiperiodic time variation of the observed luminosity. The timescale of the precession is about 10 s for a 10 M ⊙ BH and for the radial extent of a disk of several tens of gravitational radii, where M ⊙ is the solar mass. This timescale is consistent with the frequency of the low-frequency quasiperiodic oscillation (0.01–1 Hz) observed in some ultraluminous X-ray sources.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad6cd9</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion ; Accretion disks ; Black holes ; General relativity ; Luminosity ; Magnetohydrodynamic simulation ; Magnetohydrodynamics ; Precession ; Radiation ; Radiative magnetohydrodynamics ; Relativistic effects ; Rotating disks ; Solar oscillations ; Time ; X ray sources</subject><ispartof>The Astrophysical journal, 2024-09, Vol.973 (1), p.45</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-fa39b74e805c0116a1ba39bb0a24fe2b86dfe231f52143f89e20055c8374fb413</cites><orcidid>0000-0002-2309-3639 ; 0000-0003-3640-1749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad6cd9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38869,53845</link.rule.ids></links><search><creatorcontrib>Asahina, Yuta</creatorcontrib><creatorcontrib>Ohsuga, Ken</creatorcontrib><title>General Relativistic Radiation Magnetohydrodynamics Simulations of Precessing Tilted Super-Eddington Disks</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We perform a three-dimensional general relativistic radiation magnetohydrodynamics simulation of a tilted super-Eddington accretion disk around a spinning black hole (BH). The disk, which tilts and twists as it approaches the BH, precesses while maintaining its shape. The gas is mainly ejected around the rotation axis of the outer part of the disk rather than around the spin axis of the BH. The disk precession changes the ejection direction of the gas with time. The radiation energy is also released in approximately the same direction as the outflow, so the precession is expected to cause a quasiperiodic time variation of the observed luminosity. The timescale of the precession is about 10 s for a 10 M ⊙ BH and for the radial extent of a disk of several tens of gravitational radii, where M ⊙ is the solar mass. This timescale is consistent with the frequency of the low-frequency quasiperiodic oscillation (0.01–1 Hz) observed in some ultraluminous X-ray sources.</description><subject>Accretion</subject><subject>Accretion disks</subject><subject>Black holes</subject><subject>General relativity</subject><subject>Luminosity</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamics</subject><subject>Precession</subject><subject>Radiation</subject><subject>Radiative magnetohydrodynamics</subject><subject>Relativistic effects</subject><subject>Rotating disks</subject><subject>Solar oscillations</subject><subject>Time</subject><subject>X ray sources</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1PwzAMhiMEEmNw51iJK2VJk37kiMYYk4ZA25C4RWk-RkbXjKRF2r8nXdE4cbL82n5s6wXgGsE7XJB8hFJcxASn-YjLTEh6AgZH6RQMIIQkznD-fg4uvN90aULpAGymqlaOV9FCVbwx38Y3RkQLLk3IbB0983WtGvuxl87Kfc23RvhoabZtdaj7yOro1SmhvDf1OlqZqlEyWrY75eKJlEFrAuXB-E9_Cc40r7y6-o1D8PY4WY2f4vnLdDa-n8ciXNTEmmNa5kQVMBUQoYyjslNKyBOiVVIWmQwBI50miGBdUJVAmKaiwDnRJUF4CGY9V1q-YTtnttztmeWGHQTr1oy78GWlGIU0y3UiKSKUpGlCFZGlwKXOtRBSisC66Vk7Z79a5Ru2sa2rw_kMI5gRUiDcbYR9l3DWe6f0cSuCrHOHdVawzgrWuxNGbvsRY3d_zH_bfwCwY5K5</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Asahina, Yuta</creator><creator>Ohsuga, Ken</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2309-3639</orcidid><orcidid>https://orcid.org/0000-0003-3640-1749</orcidid></search><sort><creationdate>20240901</creationdate><title>General Relativistic Radiation Magnetohydrodynamics Simulations of Precessing Tilted Super-Eddington Disks</title><author>Asahina, Yuta ; Ohsuga, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-fa39b74e805c0116a1ba39bb0a24fe2b86dfe231f52143f89e20055c8374fb413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accretion</topic><topic>Accretion disks</topic><topic>Black holes</topic><topic>General relativity</topic><topic>Luminosity</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamics</topic><topic>Precession</topic><topic>Radiation</topic><topic>Radiative magnetohydrodynamics</topic><topic>Relativistic effects</topic><topic>Rotating disks</topic><topic>Solar oscillations</topic><topic>Time</topic><topic>X ray sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asahina, Yuta</creatorcontrib><creatorcontrib>Ohsuga, Ken</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asahina, Yuta</au><au>Ohsuga, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Relativistic Radiation Magnetohydrodynamics Simulations of Precessing Tilted Super-Eddington Disks</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>973</volume><issue>1</issue><spage>45</spage><pages>45-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform a three-dimensional general relativistic radiation magnetohydrodynamics simulation of a tilted super-Eddington accretion disk around a spinning black hole (BH). The disk, which tilts and twists as it approaches the BH, precesses while maintaining its shape. The gas is mainly ejected around the rotation axis of the outer part of the disk rather than around the spin axis of the BH. The disk precession changes the ejection direction of the gas with time. The radiation energy is also released in approximately the same direction as the outflow, so the precession is expected to cause a quasiperiodic time variation of the observed luminosity. The timescale of the precession is about 10 s for a 10 M ⊙ BH and for the radial extent of a disk of several tens of gravitational radii, where M ⊙ is the solar mass. This timescale is consistent with the frequency of the low-frequency quasiperiodic oscillation (0.01–1 Hz) observed in some ultraluminous X-ray sources.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad6cd9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2309-3639</orcidid><orcidid>https://orcid.org/0000-0003-3640-1749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-09, Vol.973 (1), p.45
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ad6cd9
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accretion
Accretion disks
Black holes
General relativity
Luminosity
Magnetohydrodynamic simulation
Magnetohydrodynamics
Precession
Radiation
Radiative magnetohydrodynamics
Relativistic effects
Rotating disks
Solar oscillations
Time
X ray sources
title General Relativistic Radiation Magnetohydrodynamics Simulations of Precessing Tilted Super-Eddington Disks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Relativistic%20Radiation%20Magnetohydrodynamics%20Simulations%20of%20Precessing%20Tilted%20Super-Eddington%20Disks&rft.jtitle=The%20Astrophysical%20journal&rft.au=Asahina,%20Yuta&rft.date=2024-09-01&rft.volume=973&rft.issue=1&rft.spage=45&rft.pages=45-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad6cd9&rft_dat=%3Cproquest_iop_j%3E3106448131%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106448131&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_90967f2d914945529e4dbc3bf7fccddc&rfr_iscdi=true