Modeling the Propagation of Slow Magnetoacoustic Waves in a Multistranded Coronal Loop
We study the propagation properties of slow magnetoacoustic waves in a multithermal coronal loop using a 3D MHD model, for the first time. A bundle of 33 vertical cylinders, each of 100 km radius, randomly distributed over a circular region of radius 1 Mm, is considered to represent the coronal loop...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-07, Vol.970 (1), p.58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 58 |
container_title | The Astrophysical journal |
container_volume | 970 |
creator | Krishna Prasad, S. Van Doorsselaere, T. |
description | We study the propagation properties of slow magnetoacoustic waves in a multithermal coronal loop using a 3D MHD model, for the first time. A bundle of 33 vertical cylinders, each of 100 km radius, randomly distributed over a circular region of radius 1 Mm, is considered to represent the coronal loop. The slow waves are driven by perturbing the vertical velocity ( v z ) at the base of the loop. We apply forward modeling to the simulation results to generate synthetic images in the coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. Furthermore, we add appropriate data noise to enable direct comparison with the real observations. It is found that the synthetic images at the instrument resolution show noncospatial features in different temperature channels in agreement with previous observations. Time–distance maps are constructed from the synthetic data to study the propagation properties. The results indicate that the oscillations are only visible in specific channels, depending on the temperature range of the plasma existing within the loop. Additionally, the propagation speed of slow waves is also found to be sensitive to the available temperature range. Overall, we propose that the cross-field thermal properties of coronal structures can be inferred using a combination of numerical simulations and observations of slow magnetoacoustic waves. |
doi_str_mv | 10.3847/1538-4357/ad54b7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ad54b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c9c437e7e4b643df8f17638dc833a3c8</doaj_id><sourcerecordid>3082293758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-ea32539bf8688347878aaec69ad2ab9b89b4a87d5336887d0f45c558828365093</originalsourceid><addsrcrecordid>eNp1kU2P1DAMhiPESgyz3DlGgiNl0zppnCMasbDSjFiJz1vkJunQUWlK0gHx72kpWi7sxZatx6-_GHtaipeAUl-VCrCQoPQVeSUb_YBt7lIP2UYIIYsa9JdH7HHOpyWsjNmwT4foQ98NRz59Dfw2xZGONHVx4LHl7_v4kx_oOIQpkovnPHWOf6YfIfNu4MQP537q8pRo8MHzXUxxoJ7vYxwv2UVLfQ5P_vot-3j9-sPubbF_9-Zm92pfuArrqQgElQLTtFgjgtSokSi42pCvqDENmkYSaq8AZkB70UrllEKsEGolDGzZzarrI53smLpvlH7ZSJ39k4jpaCnNU_fBOuMk6KCDbGoJvsW21DWgdwhAMNste7ZqjSl-P4c82VM8p3mjbEFgVRnQaqHESrkUc06hvetaCrt8wi5nt8vZ7fqJueT5WtLF8Z8mjSdrtLClVWhH387Yi_9g96r-BiExlWU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082293758</pqid></control><display><type>article</type><title>Modeling the Propagation of Slow Magnetoacoustic Waves in a Multistranded Coronal Loop</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Krishna Prasad, S. ; Van Doorsselaere, T.</creator><creatorcontrib>Krishna Prasad, S. ; Van Doorsselaere, T.</creatorcontrib><description>We study the propagation properties of slow magnetoacoustic waves in a multithermal coronal loop using a 3D MHD model, for the first time. A bundle of 33 vertical cylinders, each of 100 km radius, randomly distributed over a circular region of radius 1 Mm, is considered to represent the coronal loop. The slow waves are driven by perturbing the vertical velocity ( v z ) at the base of the loop. We apply forward modeling to the simulation results to generate synthetic images in the coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. Furthermore, we add appropriate data noise to enable direct comparison with the real observations. It is found that the synthetic images at the instrument resolution show noncospatial features in different temperature channels in agreement with previous observations. Time–distance maps are constructed from the synthetic data to study the propagation properties. The results indicate that the oscillations are only visible in specific channels, depending on the temperature range of the plasma existing within the loop. Additionally, the propagation speed of slow waves is also found to be sensitive to the available temperature range. Overall, we propose that the cross-field thermal properties of coronal structures can be inferred using a combination of numerical simulations and observations of slow magnetoacoustic waves.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad54b7</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Channels ; Coronal loops ; Magnetic properties ; Magnetoacoustic waves ; Magnetohydrodynamical simulations ; Noise propagation ; Numerical simulations ; Propagation ; Solar activity ; Solar corona ; Solar coronal heating ; Solar coronal loops ; Solar coronal waves ; Solar observatories ; Synthetic data ; Thermal properties ; Thermodynamic properties ; Vertical cylinders ; Vertical velocities ; Wave propagation</subject><ispartof>The Astrophysical journal, 2024-07, Vol.970 (1), p.58</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-ea32539bf8688347878aaec69ad2ab9b89b4a87d5336887d0f45c558828365093</cites><orcidid>0000-0001-9628-4113 ; 0000-0002-0735-4501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad54b7/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,862,2098,27911,27912,38877,53854</link.rule.ids></links><search><creatorcontrib>Krishna Prasad, S.</creatorcontrib><creatorcontrib>Van Doorsselaere, T.</creatorcontrib><title>Modeling the Propagation of Slow Magnetoacoustic Waves in a Multistranded Coronal Loop</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We study the propagation properties of slow magnetoacoustic waves in a multithermal coronal loop using a 3D MHD model, for the first time. A bundle of 33 vertical cylinders, each of 100 km radius, randomly distributed over a circular region of radius 1 Mm, is considered to represent the coronal loop. The slow waves are driven by perturbing the vertical velocity ( v z ) at the base of the loop. We apply forward modeling to the simulation results to generate synthetic images in the coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. Furthermore, we add appropriate data noise to enable direct comparison with the real observations. It is found that the synthetic images at the instrument resolution show noncospatial features in different temperature channels in agreement with previous observations. Time–distance maps are constructed from the synthetic data to study the propagation properties. The results indicate that the oscillations are only visible in specific channels, depending on the temperature range of the plasma existing within the loop. Additionally, the propagation speed of slow waves is also found to be sensitive to the available temperature range. Overall, we propose that the cross-field thermal properties of coronal structures can be inferred using a combination of numerical simulations and observations of slow magnetoacoustic waves.</description><subject>Channels</subject><subject>Coronal loops</subject><subject>Magnetic properties</subject><subject>Magnetoacoustic waves</subject><subject>Magnetohydrodynamical simulations</subject><subject>Noise propagation</subject><subject>Numerical simulations</subject><subject>Propagation</subject><subject>Solar activity</subject><subject>Solar corona</subject><subject>Solar coronal heating</subject><subject>Solar coronal loops</subject><subject>Solar coronal waves</subject><subject>Solar observatories</subject><subject>Synthetic data</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Vertical cylinders</subject><subject>Vertical velocities</subject><subject>Wave propagation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU2P1DAMhiPESgyz3DlGgiNl0zppnCMasbDSjFiJz1vkJunQUWlK0gHx72kpWi7sxZatx6-_GHtaipeAUl-VCrCQoPQVeSUb_YBt7lIP2UYIIYsa9JdH7HHOpyWsjNmwT4foQ98NRz59Dfw2xZGONHVx4LHl7_v4kx_oOIQpkovnPHWOf6YfIfNu4MQP537q8pRo8MHzXUxxoJ7vYxwv2UVLfQ5P_vot-3j9-sPubbF_9-Zm92pfuArrqQgElQLTtFgjgtSokSi42pCvqDENmkYSaq8AZkB70UrllEKsEGolDGzZzarrI53smLpvlH7ZSJ39k4jpaCnNU_fBOuMk6KCDbGoJvsW21DWgdwhAMNste7ZqjSl-P4c82VM8p3mjbEFgVRnQaqHESrkUc06hvetaCrt8wi5nt8vZ7fqJueT5WtLF8Z8mjSdrtLClVWhH387Yi_9g96r-BiExlWU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Krishna Prasad, S.</creator><creator>Van Doorsselaere, T.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9628-4113</orcidid><orcidid>https://orcid.org/0000-0002-0735-4501</orcidid></search><sort><creationdate>20240701</creationdate><title>Modeling the Propagation of Slow Magnetoacoustic Waves in a Multistranded Coronal Loop</title><author>Krishna Prasad, S. ; Van Doorsselaere, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-ea32539bf8688347878aaec69ad2ab9b89b4a87d5336887d0f45c558828365093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channels</topic><topic>Coronal loops</topic><topic>Magnetic properties</topic><topic>Magnetoacoustic waves</topic><topic>Magnetohydrodynamical simulations</topic><topic>Noise propagation</topic><topic>Numerical simulations</topic><topic>Propagation</topic><topic>Solar activity</topic><topic>Solar corona</topic><topic>Solar coronal heating</topic><topic>Solar coronal loops</topic><topic>Solar coronal waves</topic><topic>Solar observatories</topic><topic>Synthetic data</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Vertical cylinders</topic><topic>Vertical velocities</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishna Prasad, S.</creatorcontrib><creatorcontrib>Van Doorsselaere, T.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna Prasad, S.</au><au>Van Doorsselaere, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Propagation of Slow Magnetoacoustic Waves in a Multistranded Coronal Loop</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>970</volume><issue>1</issue><spage>58</spage><pages>58-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We study the propagation properties of slow magnetoacoustic waves in a multithermal coronal loop using a 3D MHD model, for the first time. A bundle of 33 vertical cylinders, each of 100 km radius, randomly distributed over a circular region of radius 1 Mm, is considered to represent the coronal loop. The slow waves are driven by perturbing the vertical velocity ( v z ) at the base of the loop. We apply forward modeling to the simulation results to generate synthetic images in the coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. Furthermore, we add appropriate data noise to enable direct comparison with the real observations. It is found that the synthetic images at the instrument resolution show noncospatial features in different temperature channels in agreement with previous observations. Time–distance maps are constructed from the synthetic data to study the propagation properties. The results indicate that the oscillations are only visible in specific channels, depending on the temperature range of the plasma existing within the loop. Additionally, the propagation speed of slow waves is also found to be sensitive to the available temperature range. Overall, we propose that the cross-field thermal properties of coronal structures can be inferred using a combination of numerical simulations and observations of slow magnetoacoustic waves.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad54b7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9628-4113</orcidid><orcidid>https://orcid.org/0000-0002-0735-4501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-07, Vol.970 (1), p.58 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ad54b7 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Channels Coronal loops Magnetic properties Magnetoacoustic waves Magnetohydrodynamical simulations Noise propagation Numerical simulations Propagation Solar activity Solar corona Solar coronal heating Solar coronal loops Solar coronal waves Solar observatories Synthetic data Thermal properties Thermodynamic properties Vertical cylinders Vertical velocities Wave propagation |
title | Modeling the Propagation of Slow Magnetoacoustic Waves in a Multistranded Coronal Loop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Propagation%20of%20Slow%20Magnetoacoustic%20Waves%20in%20a%20Multistranded%20Coronal%20Loop&rft.jtitle=The%20Astrophysical%20journal&rft.au=Krishna%20Prasad,%20S.&rft.date=2024-07-01&rft.volume=970&rft.issue=1&rft.spage=58&rft.pages=58-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad54b7&rft_dat=%3Cproquest_iop_j%3E3082293758%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082293758&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c9c437e7e4b643df8f17638dc833a3c8&rfr_iscdi=true |