Properties of the Line-of-sight Velocity Field in the Hot and X-Ray-emitting Circumgalactic Medium of Nearby Simulated Disk Galaxies
The hot, X-ray-emitting phase of the circumgalactic medium of massive galaxies is believed to be the reservoir of baryons from which gas flows onto the central galaxy and into which feedback from active galactic nuclei and stars inject mass, momentum, energy, and metals. These effects shape the velo...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-05, Vol.967 (1), p.49 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | The Astrophysical journal |
container_volume | 967 |
creator | ZuHone, John A. Schellenberger, Gerrit Ogorzałek, Anna Oppenheimer, Benjamin D. Stern, Jonathan Bogdán, Ákos Truong, Nhut Markevitch, Maxim Pillepich, Annalisa Nelson, Dylan Burchett, Joseph N. Khabibullin, Ildar Kilbourne, Caroline A. Kraft, Ralph P. Nulsen, Paul E. J. Veilleux, Sylvain Vogelsberger, Mark Wang, Q. Daniel Zhuravleva, Irina |
description | The hot, X-ray-emitting phase of the circumgalactic medium of massive galaxies is believed to be the reservoir of baryons from which gas flows onto the central galaxy and into which feedback from active galactic nuclei and stars inject mass, momentum, energy, and metals. These effects shape the velocity fields of the hot gas, which can be observed via the Doppler shifting and broadening of emission lines by X-ray integral field units. In this work, we analyze the gas kinematics of the hot circumgalactic medium of Milky Way–mass disk galaxies from the TNG50 simulation with synthetic observations to determine how future instruments can probe this velocity structure. We find that the hot phase is often characterized by outflows from the disk driven by feedback processes, radial inflows near the galactic plane, and rotation, although in some systems the velocity field is more disorganized and turbulent. With a spectral resolution of ∼1 eV, fast and hot outflows (∼200–500 km s
−1
) can be measured, depending on the orientation of the galaxy on the sky. The rotation velocity of the hot phase (∼100–200 km s
−1
) can be measured using line shifts in edge-on galaxies, and is slower than that of colder gas phases but similar to stellar rotation velocities. By contrast, the slow inflows (∼50–100 km s
−1
) are difficult to measure in projection with these other components, but may be detected in multicomponent spectral fits. We find that the velocity measured is sensitive to which emission lines are used. Measuring these flows will constrain theories of how the gas in these galaxies evolves. |
doi_str_mv | 10.3847/1538-4357/ad36c1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ad36c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4539e1a93ab4d52a110df75797b72fb</doaj_id><sourcerecordid>3055937068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6e9488f8bff5314b4881bc3936df034b85c7866f2bbbb6daf0c12ba5b04c95273</originalsourceid><addsrcrecordid>eNp9kUtv1DAURiMEEkNhz9ISLAm1YzuOl2igD2kKiJe6s_ycekji1HYkZs8Pr9OgskF4Y92rc8-1_FXVSwTf4o6wU0RxVxNM2ak0uNXoUbV5aD2uNhBCUreYXT-tnqV0WMqG8031-3MMk43Z2wSCA_nGgp0fbR1cnfz-JoMftg_a5yM487Y3wI_3zEXIQI4GXNdf5LG2g8_Zj3uw9VHPw172UmevwZU1fh4W70crozqCr36Ye5mtAe99-gnOC_irbH5ePXGyT_bFn_uk-n724dv2ot59Or_cvtvVmhCa69Zy0nWuU85RjIgqBVIac9waBzFRHdWsa1vXqHJaIx3UqFGSKkg0pw3DJ9Xl6jVBHsQU_SDjUQTpxX0jxL2Q5St0b4UjFHOLJMdSEUMbiRA0jlHGmWKNU8X1anVNMdzONmVxCHMcy_MFhpRyzGDbFQqulI4hpWjdw1YExZKbWEISS0hiza2MvFlHfJj-Ov-Dv_4HLqeD4G3BBeFiMg7fAQrxpiM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055937068</pqid></control><display><type>article</type><title>Properties of the Line-of-sight Velocity Field in the Hot and X-Ray-emitting Circumgalactic Medium of Nearby Simulated Disk Galaxies</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>ZuHone, John A. ; Schellenberger, Gerrit ; Ogorzałek, Anna ; Oppenheimer, Benjamin D. ; Stern, Jonathan ; Bogdán, Ákos ; Truong, Nhut ; Markevitch, Maxim ; Pillepich, Annalisa ; Nelson, Dylan ; Burchett, Joseph N. ; Khabibullin, Ildar ; Kilbourne, Caroline A. ; Kraft, Ralph P. ; Nulsen, Paul E. J. ; Veilleux, Sylvain ; Vogelsberger, Mark ; Wang, Q. Daniel ; Zhuravleva, Irina</creator><creatorcontrib>ZuHone, John A. ; Schellenberger, Gerrit ; Ogorzałek, Anna ; Oppenheimer, Benjamin D. ; Stern, Jonathan ; Bogdán, Ákos ; Truong, Nhut ; Markevitch, Maxim ; Pillepich, Annalisa ; Nelson, Dylan ; Burchett, Joseph N. ; Khabibullin, Ildar ; Kilbourne, Caroline A. ; Kraft, Ralph P. ; Nulsen, Paul E. J. ; Veilleux, Sylvain ; Vogelsberger, Mark ; Wang, Q. Daniel ; Zhuravleva, Irina</creatorcontrib><description>The hot, X-ray-emitting phase of the circumgalactic medium of massive galaxies is believed to be the reservoir of baryons from which gas flows onto the central galaxy and into which feedback from active galactic nuclei and stars inject mass, momentum, energy, and metals. These effects shape the velocity fields of the hot gas, which can be observed via the Doppler shifting and broadening of emission lines by X-ray integral field units. In this work, we analyze the gas kinematics of the hot circumgalactic medium of Milky Way–mass disk galaxies from the TNG50 simulation with synthetic observations to determine how future instruments can probe this velocity structure. We find that the hot phase is often characterized by outflows from the disk driven by feedback processes, radial inflows near the galactic plane, and rotation, although in some systems the velocity field is more disorganized and turbulent. With a spectral resolution of ∼1 eV, fast and hot outflows (∼200–500 km s
−1
) can be measured, depending on the orientation of the galaxy on the sky. The rotation velocity of the hot phase (∼100–200 km s
−1
) can be measured using line shifts in edge-on galaxies, and is slower than that of colder gas phases but similar to stellar rotation velocities. By contrast, the slow inflows (∼50–100 km s
−1
) are difficult to measure in projection with these other components, but may be detected in multicomponent spectral fits. We find that the velocity measured is sensitive to which emission lines are used. Measuring these flows will constrain theories of how the gas in these galaxies evolves.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad36c1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active galactic nuclei ; AGN host galaxies ; Disk galaxies ; Doppler effect ; Doppler sonar ; Emission ; Emission lines ; Emission measurements ; Feedback ; Galactic rotation ; Galaxies ; Gas flow ; Inflow ; Kinematics ; Measuring instruments ; Milky Way ; Momentum ; N-body simulations ; Outflow ; Rotation ; Shape effects ; Spectral resolution ; Stars & galaxies ; Stellar rotation ; Vapor phases ; Velocity ; Velocity distribution ; X rays ; X-ray astronomy ; X-ray observatories</subject><ispartof>The Astrophysical journal, 2024-05, Vol.967 (1), p.49</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6e9488f8bff5314b4881bc3936df034b85c7866f2bbbb6daf0c12ba5b04c95273</citedby><cites>FETCH-LOGICAL-c445t-6e9488f8bff5314b4881bc3936df034b85c7866f2bbbb6daf0c12ba5b04c95273</cites><orcidid>0000-0003-0144-4052 ; 0000-0001-8421-5890 ; 0000-0003-4983-0462 ; 0000-0003-4504-2557 ; 0000-0002-1979-2197 ; 0000-0002-9279-4041 ; 0000-0002-3391-2116 ; 0000-0003-0573-7733 ; 0000-0001-8593-7692 ; 0000-0001-9464-4103 ; 0000-0002-4962-0740 ; 0000-0003-3175-2347 ; 0000-0002-7541-9565 ; 0000-0003-3701-5882 ; 0000-0002-0765-0511 ; 0000-0001-7630-8085 ; 0000-0003-1065-9274 ; 0000-0003-0297-4493 ; 0000-0002-3158-6820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad36c1/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>ZuHone, John A.</creatorcontrib><creatorcontrib>Schellenberger, Gerrit</creatorcontrib><creatorcontrib>Ogorzałek, Anna</creatorcontrib><creatorcontrib>Oppenheimer, Benjamin D.</creatorcontrib><creatorcontrib>Stern, Jonathan</creatorcontrib><creatorcontrib>Bogdán, Ákos</creatorcontrib><creatorcontrib>Truong, Nhut</creatorcontrib><creatorcontrib>Markevitch, Maxim</creatorcontrib><creatorcontrib>Pillepich, Annalisa</creatorcontrib><creatorcontrib>Nelson, Dylan</creatorcontrib><creatorcontrib>Burchett, Joseph N.</creatorcontrib><creatorcontrib>Khabibullin, Ildar</creatorcontrib><creatorcontrib>Kilbourne, Caroline A.</creatorcontrib><creatorcontrib>Kraft, Ralph P.</creatorcontrib><creatorcontrib>Nulsen, Paul E. J.</creatorcontrib><creatorcontrib>Veilleux, Sylvain</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Wang, Q. Daniel</creatorcontrib><creatorcontrib>Zhuravleva, Irina</creatorcontrib><title>Properties of the Line-of-sight Velocity Field in the Hot and X-Ray-emitting Circumgalactic Medium of Nearby Simulated Disk Galaxies</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The hot, X-ray-emitting phase of the circumgalactic medium of massive galaxies is believed to be the reservoir of baryons from which gas flows onto the central galaxy and into which feedback from active galactic nuclei and stars inject mass, momentum, energy, and metals. These effects shape the velocity fields of the hot gas, which can be observed via the Doppler shifting and broadening of emission lines by X-ray integral field units. In this work, we analyze the gas kinematics of the hot circumgalactic medium of Milky Way–mass disk galaxies from the TNG50 simulation with synthetic observations to determine how future instruments can probe this velocity structure. We find that the hot phase is often characterized by outflows from the disk driven by feedback processes, radial inflows near the galactic plane, and rotation, although in some systems the velocity field is more disorganized and turbulent. With a spectral resolution of ∼1 eV, fast and hot outflows (∼200–500 km s
−1
) can be measured, depending on the orientation of the galaxy on the sky. The rotation velocity of the hot phase (∼100–200 km s
−1
) can be measured using line shifts in edge-on galaxies, and is slower than that of colder gas phases but similar to stellar rotation velocities. By contrast, the slow inflows (∼50–100 km s
−1
) are difficult to measure in projection with these other components, but may be detected in multicomponent spectral fits. We find that the velocity measured is sensitive to which emission lines are used. Measuring these flows will constrain theories of how the gas in these galaxies evolves.</description><subject>Active galactic nuclei</subject><subject>AGN host galaxies</subject><subject>Disk galaxies</subject><subject>Doppler effect</subject><subject>Doppler sonar</subject><subject>Emission</subject><subject>Emission lines</subject><subject>Emission measurements</subject><subject>Feedback</subject><subject>Galactic rotation</subject><subject>Galaxies</subject><subject>Gas flow</subject><subject>Inflow</subject><subject>Kinematics</subject><subject>Measuring instruments</subject><subject>Milky Way</subject><subject>Momentum</subject><subject>N-body simulations</subject><subject>Outflow</subject><subject>Rotation</subject><subject>Shape effects</subject><subject>Spectral resolution</subject><subject>Stars & galaxies</subject><subject>Stellar rotation</subject><subject>Vapor phases</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>X rays</subject><subject>X-ray astronomy</subject><subject>X-ray observatories</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAURiMEEkNhz9ISLAm1YzuOl2igD2kKiJe6s_ycekji1HYkZs8Pr9OgskF4Y92rc8-1_FXVSwTf4o6wU0RxVxNM2ak0uNXoUbV5aD2uNhBCUreYXT-tnqV0WMqG8031-3MMk43Z2wSCA_nGgp0fbR1cnfz-JoMftg_a5yM487Y3wI_3zEXIQI4GXNdf5LG2g8_Zj3uw9VHPw172UmevwZU1fh4W70crozqCr36Ye5mtAe99-gnOC_irbH5ePXGyT_bFn_uk-n724dv2ot59Or_cvtvVmhCa69Zy0nWuU85RjIgqBVIac9waBzFRHdWsa1vXqHJaIx3UqFGSKkg0pw3DJ9Xl6jVBHsQU_SDjUQTpxX0jxL2Q5St0b4UjFHOLJMdSEUMbiRA0jlHGmWKNU8X1anVNMdzONmVxCHMcy_MFhpRyzGDbFQqulI4hpWjdw1YExZKbWEISS0hiza2MvFlHfJj-Ov-Dv_4HLqeD4G3BBeFiMg7fAQrxpiM</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>ZuHone, John A.</creator><creator>Schellenberger, Gerrit</creator><creator>Ogorzałek, Anna</creator><creator>Oppenheimer, Benjamin D.</creator><creator>Stern, Jonathan</creator><creator>Bogdán, Ákos</creator><creator>Truong, Nhut</creator><creator>Markevitch, Maxim</creator><creator>Pillepich, Annalisa</creator><creator>Nelson, Dylan</creator><creator>Burchett, Joseph N.</creator><creator>Khabibullin, Ildar</creator><creator>Kilbourne, Caroline A.</creator><creator>Kraft, Ralph P.</creator><creator>Nulsen, Paul E. J.</creator><creator>Veilleux, Sylvain</creator><creator>Vogelsberger, Mark</creator><creator>Wang, Q. Daniel</creator><creator>Zhuravleva, Irina</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0144-4052</orcidid><orcidid>https://orcid.org/0000-0001-8421-5890</orcidid><orcidid>https://orcid.org/0000-0003-4983-0462</orcidid><orcidid>https://orcid.org/0000-0003-4504-2557</orcidid><orcidid>https://orcid.org/0000-0002-1979-2197</orcidid><orcidid>https://orcid.org/0000-0002-9279-4041</orcidid><orcidid>https://orcid.org/0000-0002-3391-2116</orcidid><orcidid>https://orcid.org/0000-0003-0573-7733</orcidid><orcidid>https://orcid.org/0000-0001-8593-7692</orcidid><orcidid>https://orcid.org/0000-0001-9464-4103</orcidid><orcidid>https://orcid.org/0000-0002-4962-0740</orcidid><orcidid>https://orcid.org/0000-0003-3175-2347</orcidid><orcidid>https://orcid.org/0000-0002-7541-9565</orcidid><orcidid>https://orcid.org/0000-0003-3701-5882</orcidid><orcidid>https://orcid.org/0000-0002-0765-0511</orcidid><orcidid>https://orcid.org/0000-0001-7630-8085</orcidid><orcidid>https://orcid.org/0000-0003-1065-9274</orcidid><orcidid>https://orcid.org/0000-0003-0297-4493</orcidid><orcidid>https://orcid.org/0000-0002-3158-6820</orcidid></search><sort><creationdate>20240501</creationdate><title>Properties of the Line-of-sight Velocity Field in the Hot and X-Ray-emitting Circumgalactic Medium of Nearby Simulated Disk Galaxies</title><author>ZuHone, John A. ; Schellenberger, Gerrit ; Ogorzałek, Anna ; Oppenheimer, Benjamin D. ; Stern, Jonathan ; Bogdán, Ákos ; Truong, Nhut ; Markevitch, Maxim ; Pillepich, Annalisa ; Nelson, Dylan ; Burchett, Joseph N. ; Khabibullin, Ildar ; Kilbourne, Caroline A. ; Kraft, Ralph P. ; Nulsen, Paul E. J. ; Veilleux, Sylvain ; Vogelsberger, Mark ; Wang, Q. Daniel ; Zhuravleva, Irina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6e9488f8bff5314b4881bc3936df034b85c7866f2bbbb6daf0c12ba5b04c95273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active galactic nuclei</topic><topic>AGN host galaxies</topic><topic>Disk galaxies</topic><topic>Doppler effect</topic><topic>Doppler sonar</topic><topic>Emission</topic><topic>Emission lines</topic><topic>Emission measurements</topic><topic>Feedback</topic><topic>Galactic rotation</topic><topic>Galaxies</topic><topic>Gas flow</topic><topic>Inflow</topic><topic>Kinematics</topic><topic>Measuring instruments</topic><topic>Milky Way</topic><topic>Momentum</topic><topic>N-body simulations</topic><topic>Outflow</topic><topic>Rotation</topic><topic>Shape effects</topic><topic>Spectral resolution</topic><topic>Stars & galaxies</topic><topic>Stellar rotation</topic><topic>Vapor phases</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>X rays</topic><topic>X-ray astronomy</topic><topic>X-ray observatories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZuHone, John A.</creatorcontrib><creatorcontrib>Schellenberger, Gerrit</creatorcontrib><creatorcontrib>Ogorzałek, Anna</creatorcontrib><creatorcontrib>Oppenheimer, Benjamin D.</creatorcontrib><creatorcontrib>Stern, Jonathan</creatorcontrib><creatorcontrib>Bogdán, Ákos</creatorcontrib><creatorcontrib>Truong, Nhut</creatorcontrib><creatorcontrib>Markevitch, Maxim</creatorcontrib><creatorcontrib>Pillepich, Annalisa</creatorcontrib><creatorcontrib>Nelson, Dylan</creatorcontrib><creatorcontrib>Burchett, Joseph N.</creatorcontrib><creatorcontrib>Khabibullin, Ildar</creatorcontrib><creatorcontrib>Kilbourne, Caroline A.</creatorcontrib><creatorcontrib>Kraft, Ralph P.</creatorcontrib><creatorcontrib>Nulsen, Paul E. J.</creatorcontrib><creatorcontrib>Veilleux, Sylvain</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Wang, Q. Daniel</creatorcontrib><creatorcontrib>Zhuravleva, Irina</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZuHone, John A.</au><au>Schellenberger, Gerrit</au><au>Ogorzałek, Anna</au><au>Oppenheimer, Benjamin D.</au><au>Stern, Jonathan</au><au>Bogdán, Ákos</au><au>Truong, Nhut</au><au>Markevitch, Maxim</au><au>Pillepich, Annalisa</au><au>Nelson, Dylan</au><au>Burchett, Joseph N.</au><au>Khabibullin, Ildar</au><au>Kilbourne, Caroline A.</au><au>Kraft, Ralph P.</au><au>Nulsen, Paul E. J.</au><au>Veilleux, Sylvain</au><au>Vogelsberger, Mark</au><au>Wang, Q. Daniel</au><au>Zhuravleva, Irina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of the Line-of-sight Velocity Field in the Hot and X-Ray-emitting Circumgalactic Medium of Nearby Simulated Disk Galaxies</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>967</volume><issue>1</issue><spage>49</spage><pages>49-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The hot, X-ray-emitting phase of the circumgalactic medium of massive galaxies is believed to be the reservoir of baryons from which gas flows onto the central galaxy and into which feedback from active galactic nuclei and stars inject mass, momentum, energy, and metals. These effects shape the velocity fields of the hot gas, which can be observed via the Doppler shifting and broadening of emission lines by X-ray integral field units. In this work, we analyze the gas kinematics of the hot circumgalactic medium of Milky Way–mass disk galaxies from the TNG50 simulation with synthetic observations to determine how future instruments can probe this velocity structure. We find that the hot phase is often characterized by outflows from the disk driven by feedback processes, radial inflows near the galactic plane, and rotation, although in some systems the velocity field is more disorganized and turbulent. With a spectral resolution of ∼1 eV, fast and hot outflows (∼200–500 km s
−1
) can be measured, depending on the orientation of the galaxy on the sky. The rotation velocity of the hot phase (∼100–200 km s
−1
) can be measured using line shifts in edge-on galaxies, and is slower than that of colder gas phases but similar to stellar rotation velocities. By contrast, the slow inflows (∼50–100 km s
−1
) are difficult to measure in projection with these other components, but may be detected in multicomponent spectral fits. We find that the velocity measured is sensitive to which emission lines are used. Measuring these flows will constrain theories of how the gas in these galaxies evolves.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad36c1</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-0144-4052</orcidid><orcidid>https://orcid.org/0000-0001-8421-5890</orcidid><orcidid>https://orcid.org/0000-0003-4983-0462</orcidid><orcidid>https://orcid.org/0000-0003-4504-2557</orcidid><orcidid>https://orcid.org/0000-0002-1979-2197</orcidid><orcidid>https://orcid.org/0000-0002-9279-4041</orcidid><orcidid>https://orcid.org/0000-0002-3391-2116</orcidid><orcidid>https://orcid.org/0000-0003-0573-7733</orcidid><orcidid>https://orcid.org/0000-0001-8593-7692</orcidid><orcidid>https://orcid.org/0000-0001-9464-4103</orcidid><orcidid>https://orcid.org/0000-0002-4962-0740</orcidid><orcidid>https://orcid.org/0000-0003-3175-2347</orcidid><orcidid>https://orcid.org/0000-0002-7541-9565</orcidid><orcidid>https://orcid.org/0000-0003-3701-5882</orcidid><orcidid>https://orcid.org/0000-0002-0765-0511</orcidid><orcidid>https://orcid.org/0000-0001-7630-8085</orcidid><orcidid>https://orcid.org/0000-0003-1065-9274</orcidid><orcidid>https://orcid.org/0000-0003-0297-4493</orcidid><orcidid>https://orcid.org/0000-0002-3158-6820</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-05, Vol.967 (1), p.49 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ad36c1 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Active galactic nuclei AGN host galaxies Disk galaxies Doppler effect Doppler sonar Emission Emission lines Emission measurements Feedback Galactic rotation Galaxies Gas flow Inflow Kinematics Measuring instruments Milky Way Momentum N-body simulations Outflow Rotation Shape effects Spectral resolution Stars & galaxies Stellar rotation Vapor phases Velocity Velocity distribution X rays X-ray astronomy X-ray observatories |
title | Properties of the Line-of-sight Velocity Field in the Hot and X-Ray-emitting Circumgalactic Medium of Nearby Simulated Disk Galaxies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20the%20Line-of-sight%20Velocity%20Field%20in%20the%20Hot%20and%20X-Ray-emitting%20Circumgalactic%20Medium%20of%20Nearby%20Simulated%20Disk%20Galaxies&rft.jtitle=The%20Astrophysical%20journal&rft.au=ZuHone,%20John%20A.&rft.date=2024-05-01&rft.volume=967&rft.issue=1&rft.spage=49&rft.pages=49-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad36c1&rft_dat=%3Cproquest_iop_j%3E3055937068%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055937068&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_f4539e1a93ab4d52a110df75797b72fb&rfr_iscdi=true |