Unraveling the Thermodynamic Enigma between Fast and Slow Coronal Mass Ejections
Coronal mass ejections (CMEs) are the most energetic expulsions of magnetized plasma from the Sun that play a crucial role in space weather dynamics. This study investigates the diverse kinematics and thermodynamic evolution of two CMEs (CME1: 2011 September 24 and CME2: 2018 August 20) at coronal h...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2023-11, Vol.958 (1), p.92 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 92 |
container_title | The Astrophysical journal |
container_volume | 958 |
creator | Khuntia, Soumyaranjan Mishra, Wageesh Mishra, Sudheer K. Wang, Yuming Zhang, Jie Lyu, Shaoyu |
description | Coronal mass ejections (CMEs) are the most energetic expulsions of magnetized plasma from the Sun that play a crucial role in space weather dynamics. This study investigates the diverse kinematics and thermodynamic evolution of two CMEs (CME1: 2011 September 24 and CME2: 2018 August 20) at coronal heights where thermodynamic measurements are limited. The peak 3D propagation speed of CME1 is high (1885 km s
−1
) with two-phase expansion (rapid and nearly constant), while the peak 3D propagation speed of CME2 is slow (420 km s
−1
) with only a gradual expansion. We estimate the distance-dependent variations in the polytropic index, heating rate, temperature, and internal forces implementing the revised FRIS model, taking inputs of 3D kinematics estimated from the graduated cylindrical shell model. We find CME1 exhibiting heat release during its early-rapid acceleration decrease and jumps to the heat-absorption state during its constant acceleration phase. In contrast to CME1, CME2 shows a gradual transition from the near-adiabatic to the heat-absorption state during its gradually increasing acceleration. Our analysis reveals that although both CMEs show differential heating, they experience heat absorption during their later propagation phases, approaching the isothermal state. The faster CME1 achieves an adiabatic state followed by an isothermal state at smaller distances from the Sun than the slower CME2. We also find that the expansion of CMEs is primarily influenced by centrifugal and thermal pressure forces, with the Lorentz force impeding expansion. Multiwavelength observations of flux-ropes at source regions support the FRIS-model-derived findings at initially observed lower coronal heights. |
doi_str_mv | 10.3847/1538-4357/ad00ba |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ad00ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_38bfa9222163433e8cc5e3e6b388f522</doaj_id><sourcerecordid>2890412546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-2f8df321a767611727fcd43725a94a920cbc6b759e16d411c97e552064c960bc3</originalsourceid><addsrcrecordid>eNp1kc1Lw0AQxRdRsFbvHhe8GrvfmxyltFqoKNiCt2Wy2bQpabbupor_vamRevI0zOPNb5h5CF1TcsdToUdU8jQRXOoRFITkcIIGR-kUDQghIlFcv52jixg3h5Zl2QC9LJsAH66umhVu1w4v1i5sffHVwLayeNJUqy3g3LWfzjV4CrHF0BT4tfafeOyDb6DGTxAjnmycbSvfxEt0VkId3dVvHaLldLIYPybz54fZ-H6eWEFVm7AyLUrOKGilFaWa6dIWgmsmIROQMWJzq3ItM0dVISi1mXZSMqKEzRTJLR-iWc8tPGzMLlRbCF_GQ2V-BB9WBkJb2doZnuZlh2SMKi44d6m10nGncp6mpWSsY930rF3w73sXW7Px-9DdFg1LMyIok0J1LtK7bPAxBlcet1JiDhmYw8PN4eGmz6Abue1HKr_7Y_5r_wb7PoZI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890412546</pqid></control><display><type>article</type><title>Unraveling the Thermodynamic Enigma between Fast and Slow Coronal Mass Ejections</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Khuntia, Soumyaranjan ; Mishra, Wageesh ; Mishra, Sudheer K. ; Wang, Yuming ; Zhang, Jie ; Lyu, Shaoyu</creator><creatorcontrib>Khuntia, Soumyaranjan ; Mishra, Wageesh ; Mishra, Sudheer K. ; Wang, Yuming ; Zhang, Jie ; Lyu, Shaoyu</creatorcontrib><description>Coronal mass ejections (CMEs) are the most energetic expulsions of magnetized plasma from the Sun that play a crucial role in space weather dynamics. This study investigates the diverse kinematics and thermodynamic evolution of two CMEs (CME1: 2011 September 24 and CME2: 2018 August 20) at coronal heights where thermodynamic measurements are limited. The peak 3D propagation speed of CME1 is high (1885 km s
−1
) with two-phase expansion (rapid and nearly constant), while the peak 3D propagation speed of CME2 is slow (420 km s
−1
) with only a gradual expansion. We estimate the distance-dependent variations in the polytropic index, heating rate, temperature, and internal forces implementing the revised FRIS model, taking inputs of 3D kinematics estimated from the graduated cylindrical shell model. We find CME1 exhibiting heat release during its early-rapid acceleration decrease and jumps to the heat-absorption state during its constant acceleration phase. In contrast to CME1, CME2 shows a gradual transition from the near-adiabatic to the heat-absorption state during its gradually increasing acceleration. Our analysis reveals that although both CMEs show differential heating, they experience heat absorption during their later propagation phases, approaching the isothermal state. The faster CME1 achieves an adiabatic state followed by an isothermal state at smaller distances from the Sun than the slower CME2. We also find that the expansion of CMEs is primarily influenced by centrifugal and thermal pressure forces, with the Lorentz force impeding expansion. Multiwavelength observations of flux-ropes at source regions support the FRIS-model-derived findings at initially observed lower coronal heights.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad00ba</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Absorption ; Acceleration ; Adiabatic flow ; Astrophysics ; Centrifugal force ; Coronal mass ejection ; Cylindrical shells ; Heat transfer ; Heating ; Heating rate ; Internal forces ; Kinematics ; Lorentz force ; Propagation ; Solar coronal mass ejections ; Space weather ; Thermodynamics</subject><ispartof>The Astrophysical journal, 2023-11, Vol.958 (1), p.92</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-2f8df321a767611727fcd43725a94a920cbc6b759e16d411c97e552064c960bc3</citedby><cites>FETCH-LOGICAL-c416t-2f8df321a767611727fcd43725a94a920cbc6b759e16d411c97e552064c960bc3</cites><orcidid>0000-0003-2129-5728 ; 0000-0003-0951-2486 ; 0009-0006-3209-658X ; 0000-0002-2349-7940 ; 0000-0003-2740-2280 ; 0000-0002-8887-3919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad00ba/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Khuntia, Soumyaranjan</creatorcontrib><creatorcontrib>Mishra, Wageesh</creatorcontrib><creatorcontrib>Mishra, Sudheer K.</creatorcontrib><creatorcontrib>Wang, Yuming</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Lyu, Shaoyu</creatorcontrib><title>Unraveling the Thermodynamic Enigma between Fast and Slow Coronal Mass Ejections</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Coronal mass ejections (CMEs) are the most energetic expulsions of magnetized plasma from the Sun that play a crucial role in space weather dynamics. This study investigates the diverse kinematics and thermodynamic evolution of two CMEs (CME1: 2011 September 24 and CME2: 2018 August 20) at coronal heights where thermodynamic measurements are limited. The peak 3D propagation speed of CME1 is high (1885 km s
−1
) with two-phase expansion (rapid and nearly constant), while the peak 3D propagation speed of CME2 is slow (420 km s
−1
) with only a gradual expansion. We estimate the distance-dependent variations in the polytropic index, heating rate, temperature, and internal forces implementing the revised FRIS model, taking inputs of 3D kinematics estimated from the graduated cylindrical shell model. We find CME1 exhibiting heat release during its early-rapid acceleration decrease and jumps to the heat-absorption state during its constant acceleration phase. In contrast to CME1, CME2 shows a gradual transition from the near-adiabatic to the heat-absorption state during its gradually increasing acceleration. Our analysis reveals that although both CMEs show differential heating, they experience heat absorption during their later propagation phases, approaching the isothermal state. The faster CME1 achieves an adiabatic state followed by an isothermal state at smaller distances from the Sun than the slower CME2. We also find that the expansion of CMEs is primarily influenced by centrifugal and thermal pressure forces, with the Lorentz force impeding expansion. Multiwavelength observations of flux-ropes at source regions support the FRIS-model-derived findings at initially observed lower coronal heights.</description><subject>Absorption</subject><subject>Acceleration</subject><subject>Adiabatic flow</subject><subject>Astrophysics</subject><subject>Centrifugal force</subject><subject>Coronal mass ejection</subject><subject>Cylindrical shells</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Heating rate</subject><subject>Internal forces</subject><subject>Kinematics</subject><subject>Lorentz force</subject><subject>Propagation</subject><subject>Solar coronal mass ejections</subject><subject>Space weather</subject><subject>Thermodynamics</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1Lw0AQxRdRsFbvHhe8GrvfmxyltFqoKNiCt2Wy2bQpabbupor_vamRevI0zOPNb5h5CF1TcsdToUdU8jQRXOoRFITkcIIGR-kUDQghIlFcv52jixg3h5Zl2QC9LJsAH66umhVu1w4v1i5sffHVwLayeNJUqy3g3LWfzjV4CrHF0BT4tfafeOyDb6DGTxAjnmycbSvfxEt0VkId3dVvHaLldLIYPybz54fZ-H6eWEFVm7AyLUrOKGilFaWa6dIWgmsmIROQMWJzq3ItM0dVISi1mXZSMqKEzRTJLR-iWc8tPGzMLlRbCF_GQ2V-BB9WBkJb2doZnuZlh2SMKi44d6m10nGncp6mpWSsY930rF3w73sXW7Px-9DdFg1LMyIok0J1LtK7bPAxBlcet1JiDhmYw8PN4eGmz6Abue1HKr_7Y_5r_wb7PoZI</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Khuntia, Soumyaranjan</creator><creator>Mishra, Wageesh</creator><creator>Mishra, Sudheer K.</creator><creator>Wang, Yuming</creator><creator>Zhang, Jie</creator><creator>Lyu, Shaoyu</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2129-5728</orcidid><orcidid>https://orcid.org/0000-0003-0951-2486</orcidid><orcidid>https://orcid.org/0009-0006-3209-658X</orcidid><orcidid>https://orcid.org/0000-0002-2349-7940</orcidid><orcidid>https://orcid.org/0000-0003-2740-2280</orcidid><orcidid>https://orcid.org/0000-0002-8887-3919</orcidid></search><sort><creationdate>20231101</creationdate><title>Unraveling the Thermodynamic Enigma between Fast and Slow Coronal Mass Ejections</title><author>Khuntia, Soumyaranjan ; Mishra, Wageesh ; Mishra, Sudheer K. ; Wang, Yuming ; Zhang, Jie ; Lyu, Shaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-2f8df321a767611727fcd43725a94a920cbc6b759e16d411c97e552064c960bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Acceleration</topic><topic>Adiabatic flow</topic><topic>Astrophysics</topic><topic>Centrifugal force</topic><topic>Coronal mass ejection</topic><topic>Cylindrical shells</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Heating rate</topic><topic>Internal forces</topic><topic>Kinematics</topic><topic>Lorentz force</topic><topic>Propagation</topic><topic>Solar coronal mass ejections</topic><topic>Space weather</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khuntia, Soumyaranjan</creatorcontrib><creatorcontrib>Mishra, Wageesh</creatorcontrib><creatorcontrib>Mishra, Sudheer K.</creatorcontrib><creatorcontrib>Wang, Yuming</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Lyu, Shaoyu</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khuntia, Soumyaranjan</au><au>Mishra, Wageesh</au><au>Mishra, Sudheer K.</au><au>Wang, Yuming</au><au>Zhang, Jie</au><au>Lyu, Shaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Thermodynamic Enigma between Fast and Slow Coronal Mass Ejections</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>958</volume><issue>1</issue><spage>92</spage><pages>92-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Coronal mass ejections (CMEs) are the most energetic expulsions of magnetized plasma from the Sun that play a crucial role in space weather dynamics. This study investigates the diverse kinematics and thermodynamic evolution of two CMEs (CME1: 2011 September 24 and CME2: 2018 August 20) at coronal heights where thermodynamic measurements are limited. The peak 3D propagation speed of CME1 is high (1885 km s
−1
) with two-phase expansion (rapid and nearly constant), while the peak 3D propagation speed of CME2 is slow (420 km s
−1
) with only a gradual expansion. We estimate the distance-dependent variations in the polytropic index, heating rate, temperature, and internal forces implementing the revised FRIS model, taking inputs of 3D kinematics estimated from the graduated cylindrical shell model. We find CME1 exhibiting heat release during its early-rapid acceleration decrease and jumps to the heat-absorption state during its constant acceleration phase. In contrast to CME1, CME2 shows a gradual transition from the near-adiabatic to the heat-absorption state during its gradually increasing acceleration. Our analysis reveals that although both CMEs show differential heating, they experience heat absorption during their later propagation phases, approaching the isothermal state. The faster CME1 achieves an adiabatic state followed by an isothermal state at smaller distances from the Sun than the slower CME2. We also find that the expansion of CMEs is primarily influenced by centrifugal and thermal pressure forces, with the Lorentz force impeding expansion. Multiwavelength observations of flux-ropes at source regions support the FRIS-model-derived findings at initially observed lower coronal heights.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad00ba</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2129-5728</orcidid><orcidid>https://orcid.org/0000-0003-0951-2486</orcidid><orcidid>https://orcid.org/0009-0006-3209-658X</orcidid><orcidid>https://orcid.org/0000-0002-2349-7940</orcidid><orcidid>https://orcid.org/0000-0003-2740-2280</orcidid><orcidid>https://orcid.org/0000-0002-8887-3919</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2023-11, Vol.958 (1), p.92 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ad00ba |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Absorption Acceleration Adiabatic flow Astrophysics Centrifugal force Coronal mass ejection Cylindrical shells Heat transfer Heating Heating rate Internal forces Kinematics Lorentz force Propagation Solar coronal mass ejections Space weather Thermodynamics |
title | Unraveling the Thermodynamic Enigma between Fast and Slow Coronal Mass Ejections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Thermodynamic%20Enigma%20between%20Fast%20and%20Slow%20Coronal%20Mass%20Ejections&rft.jtitle=The%20Astrophysical%20journal&rft.au=Khuntia,%20Soumyaranjan&rft.date=2023-11-01&rft.volume=958&rft.issue=1&rft.spage=92&rft.pages=92-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad00ba&rft_dat=%3Cproquest_iop_j%3E2890412546%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890412546&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_38bfa9222163433e8cc5e3e6b388f522&rfr_iscdi=true |