The Maximum Energy of Shock-accelerated Cosmic Rays

Identifying the accelerators of Galactic cosmic ray (CR) protons with energies up to a few PeV (10 15 eV) remains a theoretical and observational challenge. Supernova remnants (SNRs) represent strong candidates because they provide sufficient energetics to reproduce the CR flux observed at Earth. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-11, Vol.958 (1), p.3
1. Verfasser: Diesing, Rebecca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 3
container_title The Astrophysical journal
container_volume 958
creator Diesing, Rebecca
description Identifying the accelerators of Galactic cosmic ray (CR) protons with energies up to a few PeV (10 15 eV) remains a theoretical and observational challenge. Supernova remnants (SNRs) represent strong candidates because they provide sufficient energetics to reproduce the CR flux observed at Earth. However, it remains unclear whether they can accelerate particles to PeV energies, particularly after the very early stages of their evolution. This uncertainty has prompted searches for other source classes and necessitates comprehensive theoretical modeling of the maximum proton energy, E max , accelerated by an arbitrary shock. While analytic estimates of E max have been put forward in the literature, they do not fully account for the complex interplay between particle acceleration, magnetic field amplification, and shock evolution. This paper uses a multizone, semianalytic model of particle acceleration based on kinetic simulations to place constraints on E max for a wide range of astrophysical shocks. In particular, we develop relationships between E max , shock velocity, size, and ambient medium. We find that SNRs can only accelerate PeV particles under a select set of circumstances, namely, if the shock velocity exceeds ∼10 4 km s −1 and escaping particles drive magnetic field amplification. However, older and slower SNRs may still produce observational signatures of PeV particles due to populations accelerated when the shock was younger. Our results serve as a reference for modelers seeking to quickly produce a self-consistent estimate of the maximum energy accelerated by an arbitrary astrophysical shock. 1 1 Presented as a thesis to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for a Ph.D. degree.
doi_str_mv 10.3847/1538-4357/ad00b1
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ad00b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_88273591f72449c0a64fe5d60c4b88ed</doaj_id><sourcerecordid>2887042160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-1764b39c0091724de2b73a1a18fe789918548116872550073f47369b9aa399773</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKd3j4VdrUuapEmOMvwxmAg6wVt4TZOtdV1q2oH7722tzIt4erzH98fjg9AlwddUMjElnMqYUS6mkGOckSM0OpyO0QhjzOKUirdTdNY0Zb8mSo0QXa5t9AifRbWrotutDat95F30svbmPQZj7MYGaG0ezXxTFSZ6hn1zjk4cbBp78TPH6PXudjl7iBdP9_PZzSI2jLE2JiJlGVUGY0VEwnKbZIICASKdFVIpIjmThKRSJJxjLKhjgqYqUwBUKSHoGM2H3NxDqetQVBD22kOhvw8-rDSEtjAbq6VMBOWKuK6IdZWQMmd5nmLDMilt3mVNhqw6-I-dbVpd-l3Ydu_rRErR0SAp7lR4UJngmyZYd2glWPeYdc9U90z1gLmzXA2Wwte_mf_IJ3_IoS614lITTXWdO_oFV7iFzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887042160</pqid></control><display><type>article</type><title>The Maximum Energy of Shock-accelerated Cosmic Rays</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Diesing, Rebecca</creator><creatorcontrib>Diesing, Rebecca</creatorcontrib><description>Identifying the accelerators of Galactic cosmic ray (CR) protons with energies up to a few PeV (10 15 eV) remains a theoretical and observational challenge. Supernova remnants (SNRs) represent strong candidates because they provide sufficient energetics to reproduce the CR flux observed at Earth. However, it remains unclear whether they can accelerate particles to PeV energies, particularly after the very early stages of their evolution. This uncertainty has prompted searches for other source classes and necessitates comprehensive theoretical modeling of the maximum proton energy, E max , accelerated by an arbitrary shock. While analytic estimates of E max have been put forward in the literature, they do not fully account for the complex interplay between particle acceleration, magnetic field amplification, and shock evolution. This paper uses a multizone, semianalytic model of particle acceleration based on kinetic simulations to place constraints on E max for a wide range of astrophysical shocks. In particular, we develop relationships between E max , shock velocity, size, and ambient medium. We find that SNRs can only accelerate PeV particles under a select set of circumstances, namely, if the shock velocity exceeds ∼10 4 km s −1 and escaping particles drive magnetic field amplification. However, older and slower SNRs may still produce observational signatures of PeV particles due to populations accelerated when the shock was younger. Our results serve as a reference for modelers seeking to quickly produce a self-consistent estimate of the maximum energy accelerated by an arbitrary astrophysical shock. 1 1 Presented as a thesis to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for a Ph.D. degree.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad00b1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Amplification ; Astronomy ; Astrophysics ; Constraint modelling ; Cosmic ray showers ; Cosmic rays ; Evolution ; Galactic cosmic rays ; Gamma-ray astronomy ; Gamma-rays ; Magnetic fields ; Neutrino astronomy ; Particle acceleration ; Particle accelerators ; Proton energy ; Protons ; Shocks ; Supernova ; Supernova remnants ; Velocity</subject><ispartof>The Astrophysical journal, 2023-11, Vol.958 (1), p.3</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-1764b39c0091724de2b73a1a18fe789918548116872550073f47369b9aa399773</citedby><cites>FETCH-LOGICAL-c444t-1764b39c0091724de2b73a1a18fe789918548116872550073f47369b9aa399773</cites><orcidid>0000-0002-6679-0012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad00b1/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Diesing, Rebecca</creatorcontrib><title>The Maximum Energy of Shock-accelerated Cosmic Rays</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Identifying the accelerators of Galactic cosmic ray (CR) protons with energies up to a few PeV (10 15 eV) remains a theoretical and observational challenge. Supernova remnants (SNRs) represent strong candidates because they provide sufficient energetics to reproduce the CR flux observed at Earth. However, it remains unclear whether they can accelerate particles to PeV energies, particularly after the very early stages of their evolution. This uncertainty has prompted searches for other source classes and necessitates comprehensive theoretical modeling of the maximum proton energy, E max , accelerated by an arbitrary shock. While analytic estimates of E max have been put forward in the literature, they do not fully account for the complex interplay between particle acceleration, magnetic field amplification, and shock evolution. This paper uses a multizone, semianalytic model of particle acceleration based on kinetic simulations to place constraints on E max for a wide range of astrophysical shocks. In particular, we develop relationships between E max , shock velocity, size, and ambient medium. We find that SNRs can only accelerate PeV particles under a select set of circumstances, namely, if the shock velocity exceeds ∼10 4 km s −1 and escaping particles drive magnetic field amplification. However, older and slower SNRs may still produce observational signatures of PeV particles due to populations accelerated when the shock was younger. Our results serve as a reference for modelers seeking to quickly produce a self-consistent estimate of the maximum energy accelerated by an arbitrary astrophysical shock. 1 1 Presented as a thesis to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for a Ph.D. degree.</description><subject>Amplification</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Constraint modelling</subject><subject>Cosmic ray showers</subject><subject>Cosmic rays</subject><subject>Evolution</subject><subject>Galactic cosmic rays</subject><subject>Gamma-ray astronomy</subject><subject>Gamma-rays</subject><subject>Magnetic fields</subject><subject>Neutrino astronomy</subject><subject>Particle acceleration</subject><subject>Particle accelerators</subject><subject>Proton energy</subject><subject>Protons</subject><subject>Shocks</subject><subject>Supernova</subject><subject>Supernova remnants</subject><subject>Velocity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kM9LwzAUx4MoOKd3j4VdrUuapEmOMvwxmAg6wVt4TZOtdV1q2oH7722tzIt4erzH98fjg9AlwddUMjElnMqYUS6mkGOckSM0OpyO0QhjzOKUirdTdNY0Zb8mSo0QXa5t9AifRbWrotutDat95F30svbmPQZj7MYGaG0ezXxTFSZ6hn1zjk4cbBp78TPH6PXudjl7iBdP9_PZzSI2jLE2JiJlGVUGY0VEwnKbZIICASKdFVIpIjmThKRSJJxjLKhjgqYqUwBUKSHoGM2H3NxDqetQVBD22kOhvw8-rDSEtjAbq6VMBOWKuK6IdZWQMmd5nmLDMilt3mVNhqw6-I-dbVpd-l3Ydu_rRErR0SAp7lR4UJngmyZYd2glWPeYdc9U90z1gLmzXA2Wwte_mf_IJ3_IoS614lITTXWdO_oFV7iFzw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Diesing, Rebecca</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6679-0012</orcidid></search><sort><creationdate>20231101</creationdate><title>The Maximum Energy of Shock-accelerated Cosmic Rays</title><author>Diesing, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-1764b39c0091724de2b73a1a18fe789918548116872550073f47369b9aa399773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplification</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Constraint modelling</topic><topic>Cosmic ray showers</topic><topic>Cosmic rays</topic><topic>Evolution</topic><topic>Galactic cosmic rays</topic><topic>Gamma-ray astronomy</topic><topic>Gamma-rays</topic><topic>Magnetic fields</topic><topic>Neutrino astronomy</topic><topic>Particle acceleration</topic><topic>Particle accelerators</topic><topic>Proton energy</topic><topic>Protons</topic><topic>Shocks</topic><topic>Supernova</topic><topic>Supernova remnants</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diesing, Rebecca</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diesing, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Maximum Energy of Shock-accelerated Cosmic Rays</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>958</volume><issue>1</issue><spage>3</spage><pages>3-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Identifying the accelerators of Galactic cosmic ray (CR) protons with energies up to a few PeV (10 15 eV) remains a theoretical and observational challenge. Supernova remnants (SNRs) represent strong candidates because they provide sufficient energetics to reproduce the CR flux observed at Earth. However, it remains unclear whether they can accelerate particles to PeV energies, particularly after the very early stages of their evolution. This uncertainty has prompted searches for other source classes and necessitates comprehensive theoretical modeling of the maximum proton energy, E max , accelerated by an arbitrary shock. While analytic estimates of E max have been put forward in the literature, they do not fully account for the complex interplay between particle acceleration, magnetic field amplification, and shock evolution. This paper uses a multizone, semianalytic model of particle acceleration based on kinetic simulations to place constraints on E max for a wide range of astrophysical shocks. In particular, we develop relationships between E max , shock velocity, size, and ambient medium. We find that SNRs can only accelerate PeV particles under a select set of circumstances, namely, if the shock velocity exceeds ∼10 4 km s −1 and escaping particles drive magnetic field amplification. However, older and slower SNRs may still produce observational signatures of PeV particles due to populations accelerated when the shock was younger. Our results serve as a reference for modelers seeking to quickly produce a self-consistent estimate of the maximum energy accelerated by an arbitrary astrophysical shock. 1 1 Presented as a thesis to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for a Ph.D. degree.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad00b1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6679-0012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2023-11, Vol.958 (1), p.3
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ad00b1
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Amplification
Astronomy
Astrophysics
Constraint modelling
Cosmic ray showers
Cosmic rays
Evolution
Galactic cosmic rays
Gamma-ray astronomy
Gamma-rays
Magnetic fields
Neutrino astronomy
Particle acceleration
Particle accelerators
Proton energy
Protons
Shocks
Supernova
Supernova remnants
Velocity
title The Maximum Energy of Shock-accelerated Cosmic Rays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Maximum%20Energy%20of%20Shock-accelerated%20Cosmic%20Rays&rft.jtitle=The%20Astrophysical%20journal&rft.au=Diesing,%20Rebecca&rft.date=2023-11-01&rft.volume=958&rft.issue=1&rft.spage=3&rft.pages=3-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad00b1&rft_dat=%3Cproquest_iop_j%3E2887042160%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887042160&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_88273591f72449c0a64fe5d60c4b88ed&rfr_iscdi=true