Magnetohydrodynamic Mode Conversion in the Solar Corona: Insights from Fresnel-like Models of Waves at Sharp Interfaces
The solar atmosphere is known to contain many different types of wave-like oscillation. Waves and other fluctuations (e.g., turbulent eddies) are believed to be responsible for at least some of the energy transport and dissipation that heats the corona and accelerates the solar wind. Thus, it is imp...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2023-09, Vol.955 (1), p.68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | The Astrophysical journal |
container_volume | 955 |
creator | Cranmer, Steven R. Molnar, Momchil E. |
description | The solar atmosphere is known to contain many different types of wave-like oscillation. Waves and other fluctuations (e.g., turbulent eddies) are believed to be responsible for at least some of the energy transport and dissipation that heats the corona and accelerates the solar wind. Thus, it is important to understand the behavior of magnetohydrodynamic (MHD) waves as they propagate and evolve in different regions of the Sun’s atmosphere. In this paper, we investigate how MHD waves can affect the overall plasma state when they reflect and refract at sharp, planar interfaces in density. First, we correct an error in a foundational paper (Stein) that affects the calculation of wave energy-flux conservation. Second, we apply this model to reflection-driven MHD turbulence in the solar wind, where the presence of density fluctuations can enhance the generation of inward-propagating Alfvén waves. This model reproduces the time-averaged Elsässer imbalance fraction (i.e., the ratio of inward to outward Alfvénic power) from several published numerical simulations. Lastly, we model how the complex magnetic field threading the transition region (TR) between the chromosphere and corona helps convert a fraction of upward-propagating Alfvén waves into fast-mode and slow-mode MHD waves. These magnetosonic waves dissipate in a narrow region around the TR and produce a sharp peak in the heating rate. This newly found source of heating sometimes exceeds the expected heating rate from Alfvénic turbulence by an order of magnitude. It may explain why some earlier models seemed to require an additional ad hoc heat source at this location. |
doi_str_mv | 10.3847/1538-4357/acee6c |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_acee6c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0aa60808edf0421dabb906fbed7c9013</doaj_id><sourcerecordid>2866430206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ee3062e7869aec7a494a1098c3e6ef64955946a95959dcbed31b576014fc6a5d3</originalsourceid><addsrcrecordid>eNp1kUFvGyEQhVHVSHWT3ntEyrXbgGHZJbfIalpLiXpIovaGxjDYOGtwYZPK_744W6WnigPi6b1vRjxCPnL2WfSyu-Ct6Bsp2u4CLKKyb8jsVXpLZowx2SjR_XxH3peyPT7nWs_I71tYRxzT5uBycocIu2DpbXJIFyk-Yy4hRRoiHTdI79IAueo5Rbiky1jCejMW6nPa0euMJeLQDOERX_JDocnTH_CMhcJI7zaQ9zUzYvZ1wXJGTjwMBT_8vU_Jw_WX-8W35ub71-Xi6qaxkquxQRRMzbHrlQa0HUgtgTPdW4EKvZK6bbVUoNt6nF2hE3zVdopx6a2C1olTspy4LsHW7HPYQT6YBMG8CCmvDeQx2AENA1CsZz06Xz-HO1itNFO-QjurGReVdT6x9jn9esIymm16yrGub-a9UlKwOVPVxSaXzamUjP51KmfmWJU59mKOvZipqhr5NEVC2v9j_tf-B-XElrE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866430206</pqid></control><display><type>article</type><title>Magnetohydrodynamic Mode Conversion in the Solar Corona: Insights from Fresnel-like Models of Waves at Sharp Interfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cranmer, Steven R. ; Molnar, Momchil E.</creator><creatorcontrib>Cranmer, Steven R. ; Molnar, Momchil E.</creatorcontrib><description>The solar atmosphere is known to contain many different types of wave-like oscillation. Waves and other fluctuations (e.g., turbulent eddies) are believed to be responsible for at least some of the energy transport and dissipation that heats the corona and accelerates the solar wind. Thus, it is important to understand the behavior of magnetohydrodynamic (MHD) waves as they propagate and evolve in different regions of the Sun’s atmosphere. In this paper, we investigate how MHD waves can affect the overall plasma state when they reflect and refract at sharp, planar interfaces in density. First, we correct an error in a foundational paper (Stein) that affects the calculation of wave energy-flux conservation. Second, we apply this model to reflection-driven MHD turbulence in the solar wind, where the presence of density fluctuations can enhance the generation of inward-propagating Alfvén waves. This model reproduces the time-averaged Elsässer imbalance fraction (i.e., the ratio of inward to outward Alfvénic power) from several published numerical simulations. Lastly, we model how the complex magnetic field threading the transition region (TR) between the chromosphere and corona helps convert a fraction of upward-propagating Alfvén waves into fast-mode and slow-mode MHD waves. These magnetosonic waves dissipate in a narrow region around the TR and produce a sharp peak in the heating rate. This newly found source of heating sometimes exceeds the expected heating rate from Alfvénic turbulence by an order of magnitude. It may explain why some earlier models seemed to require an additional ad hoc heat source at this location.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/acee6c</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Alfven waves ; Astrophysics ; Atmosphere ; Atmospheric models ; Chromosphere ; Corona ; Density ; Dissipation ; Eddies ; Energy conservation ; Energy transport ; Error correction ; Fluctuations ; Heating ; Heating rate ; Interplanetary turbulence ; Magnetic fields ; Magnetohydrodynamic turbulence ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Mathematical models ; Modelling ; Numerical simulations ; Solar atmosphere ; Solar corona ; Solar coronal heating ; Solar oscillations ; Solar wind ; Wave energy ; Wave propagation</subject><ispartof>The Astrophysical journal, 2023-09, Vol.955 (1), p.68</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ee3062e7869aec7a494a1098c3e6ef64955946a95959dcbed31b576014fc6a5d3</citedby><cites>FETCH-LOGICAL-c416t-ee3062e7869aec7a494a1098c3e6ef64955946a95959dcbed31b576014fc6a5d3</cites><orcidid>0000-0002-3699-3134 ; 0000-0003-0583-0516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/acee6c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Cranmer, Steven R.</creatorcontrib><creatorcontrib>Molnar, Momchil E.</creatorcontrib><title>Magnetohydrodynamic Mode Conversion in the Solar Corona: Insights from Fresnel-like Models of Waves at Sharp Interfaces</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The solar atmosphere is known to contain many different types of wave-like oscillation. Waves and other fluctuations (e.g., turbulent eddies) are believed to be responsible for at least some of the energy transport and dissipation that heats the corona and accelerates the solar wind. Thus, it is important to understand the behavior of magnetohydrodynamic (MHD) waves as they propagate and evolve in different regions of the Sun’s atmosphere. In this paper, we investigate how MHD waves can affect the overall plasma state when they reflect and refract at sharp, planar interfaces in density. First, we correct an error in a foundational paper (Stein) that affects the calculation of wave energy-flux conservation. Second, we apply this model to reflection-driven MHD turbulence in the solar wind, where the presence of density fluctuations can enhance the generation of inward-propagating Alfvén waves. This model reproduces the time-averaged Elsässer imbalance fraction (i.e., the ratio of inward to outward Alfvénic power) from several published numerical simulations. Lastly, we model how the complex magnetic field threading the transition region (TR) between the chromosphere and corona helps convert a fraction of upward-propagating Alfvén waves into fast-mode and slow-mode MHD waves. These magnetosonic waves dissipate in a narrow region around the TR and produce a sharp peak in the heating rate. This newly found source of heating sometimes exceeds the expected heating rate from Alfvénic turbulence by an order of magnitude. It may explain why some earlier models seemed to require an additional ad hoc heat source at this location.</description><subject>Alfven waves</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Chromosphere</subject><subject>Corona</subject><subject>Density</subject><subject>Dissipation</subject><subject>Eddies</subject><subject>Energy conservation</subject><subject>Energy transport</subject><subject>Error correction</subject><subject>Fluctuations</subject><subject>Heating</subject><subject>Heating rate</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical simulations</subject><subject>Solar atmosphere</subject><subject>Solar corona</subject><subject>Solar coronal heating</subject><subject>Solar oscillations</subject><subject>Solar wind</subject><subject>Wave energy</subject><subject>Wave propagation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUFvGyEQhVHVSHWT3ntEyrXbgGHZJbfIalpLiXpIovaGxjDYOGtwYZPK_744W6WnigPi6b1vRjxCPnL2WfSyu-Ct6Bsp2u4CLKKyb8jsVXpLZowx2SjR_XxH3peyPT7nWs_I71tYRxzT5uBycocIu2DpbXJIFyk-Yy4hRRoiHTdI79IAueo5Rbiky1jCejMW6nPa0euMJeLQDOERX_JDocnTH_CMhcJI7zaQ9zUzYvZ1wXJGTjwMBT_8vU_Jw_WX-8W35ub71-Xi6qaxkquxQRRMzbHrlQa0HUgtgTPdW4EKvZK6bbVUoNt6nF2hE3zVdopx6a2C1olTspy4LsHW7HPYQT6YBMG8CCmvDeQx2AENA1CsZz06Xz-HO1itNFO-QjurGReVdT6x9jn9esIymm16yrGub-a9UlKwOVPVxSaXzamUjP51KmfmWJU59mKOvZipqhr5NEVC2v9j_tf-B-XElrE</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Cranmer, Steven R.</creator><creator>Molnar, Momchil E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3699-3134</orcidid><orcidid>https://orcid.org/0000-0003-0583-0516</orcidid></search><sort><creationdate>20230901</creationdate><title>Magnetohydrodynamic Mode Conversion in the Solar Corona: Insights from Fresnel-like Models of Waves at Sharp Interfaces</title><author>Cranmer, Steven R. ; Molnar, Momchil E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ee3062e7869aec7a494a1098c3e6ef64955946a95959dcbed31b576014fc6a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alfven waves</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Chromosphere</topic><topic>Corona</topic><topic>Density</topic><topic>Dissipation</topic><topic>Eddies</topic><topic>Energy conservation</topic><topic>Energy transport</topic><topic>Error correction</topic><topic>Fluctuations</topic><topic>Heating</topic><topic>Heating rate</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical simulations</topic><topic>Solar atmosphere</topic><topic>Solar corona</topic><topic>Solar coronal heating</topic><topic>Solar oscillations</topic><topic>Solar wind</topic><topic>Wave energy</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cranmer, Steven R.</creatorcontrib><creatorcontrib>Molnar, Momchil E.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cranmer, Steven R.</au><au>Molnar, Momchil E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Mode Conversion in the Solar Corona: Insights from Fresnel-like Models of Waves at Sharp Interfaces</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>955</volume><issue>1</issue><spage>68</spage><pages>68-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The solar atmosphere is known to contain many different types of wave-like oscillation. Waves and other fluctuations (e.g., turbulent eddies) are believed to be responsible for at least some of the energy transport and dissipation that heats the corona and accelerates the solar wind. Thus, it is important to understand the behavior of magnetohydrodynamic (MHD) waves as they propagate and evolve in different regions of the Sun’s atmosphere. In this paper, we investigate how MHD waves can affect the overall plasma state when they reflect and refract at sharp, planar interfaces in density. First, we correct an error in a foundational paper (Stein) that affects the calculation of wave energy-flux conservation. Second, we apply this model to reflection-driven MHD turbulence in the solar wind, where the presence of density fluctuations can enhance the generation of inward-propagating Alfvén waves. This model reproduces the time-averaged Elsässer imbalance fraction (i.e., the ratio of inward to outward Alfvénic power) from several published numerical simulations. Lastly, we model how the complex magnetic field threading the transition region (TR) between the chromosphere and corona helps convert a fraction of upward-propagating Alfvén waves into fast-mode and slow-mode MHD waves. These magnetosonic waves dissipate in a narrow region around the TR and produce a sharp peak in the heating rate. This newly found source of heating sometimes exceeds the expected heating rate from Alfvénic turbulence by an order of magnitude. It may explain why some earlier models seemed to require an additional ad hoc heat source at this location.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/acee6c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3699-3134</orcidid><orcidid>https://orcid.org/0000-0003-0583-0516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2023-09, Vol.955 (1), p.68 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_acee6c |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alfven waves Astrophysics Atmosphere Atmospheric models Chromosphere Corona Density Dissipation Eddies Energy conservation Energy transport Error correction Fluctuations Heating Heating rate Interplanetary turbulence Magnetic fields Magnetohydrodynamic turbulence Magnetohydrodynamic waves Magnetohydrodynamics Mathematical models Modelling Numerical simulations Solar atmosphere Solar corona Solar coronal heating Solar oscillations Solar wind Wave energy Wave propagation |
title | Magnetohydrodynamic Mode Conversion in the Solar Corona: Insights from Fresnel-like Models of Waves at Sharp Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Mode%20Conversion%20in%20the%20Solar%20Corona:%20Insights%20from%20Fresnel-like%20Models%20of%20Waves%20at%20Sharp%20Interfaces&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cranmer,%20Steven%20R.&rft.date=2023-09-01&rft.volume=955&rft.issue=1&rft.spage=68&rft.pages=68-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/acee6c&rft_dat=%3Cproquest_iop_j%3E2866430206%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866430206&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0aa60808edf0421dabb906fbed7c9013&rfr_iscdi=true |