The Inhomogeneity Effect. II. Rotational and Orbital States Impact Planetary Cooling

We generalize the theory of the inhomogeneity effect to enable comparison among different inhomogeneous planets. A metric of inhomogeneity based on the cumulative distribution function is applied to investigate the dependence of planetary cooling on previously overlooked parameters. The mean surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-11, Vol.957 (1), p.21
1. Verfasser: Zhang, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 21
container_title The Astrophysical journal
container_volume 957
creator Zhang, Xi
description We generalize the theory of the inhomogeneity effect to enable comparison among different inhomogeneous planets. A metric of inhomogeneity based on the cumulative distribution function is applied to investigate the dependence of planetary cooling on previously overlooked parameters. The mean surface temperature of airless planets increases with rotational rate and surface thermal inertia, which bounds the value in the tidally locked configuration and the equilibrium temperature. Using an analytical model, we demonstrate that the internal heat flux of giant planets exhibits significant spatial variability, primarily emitted from the nightside and high-latitude regions acting as radiator fins . Given a horizontally uniform interior temperature in the convective zone, the outgoing internal flux increases up to several folds as the inhomogeneity of the incoming stellar flux increases. The enhancement decreases with increasing heat redistribution through planetary dynamics or rotation. The outgoing internal flux on rapidly rotating planets generally increases with planetary obliquity and orbital eccentricity. The radiative timescale and true anomaly of the vernal equinox also play significant roles. If the radiative timescale is long, the outgoing internal flux shows a slightly decreasing but nonlinear trend with obliquity. Our findings indicate that rotational and orbital states greatly influence the cooling of planets and impact the interior evolution of giant planets, particularly for tidally locked planets and planets with high eccentricity and obliquity (such as Uranus), as well as the spatial and temporal variations of their cooling fluxes.
doi_str_mv 10.3847/1538-4357/ace780
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ace780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b1070a3a0a74dc1bd14b90c5e383506</doaj_id><sourcerecordid>2882424111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-da67e254bd823ba1930ac62cf33b2e35a2715bdddbb113280a21e5ec2150b3d03</originalsourceid><addsrcrecordid>eNp1UU1PwzAMjRBIjMGdYySudMtHs7RHNA2ohDQEQ-IWOR_dOnXNSLPD_j0tRePEyfaT37P9jNAtJROepXJKBc-SlAs5BeNkRs7Q6ASdoxEhJE1mXH5eoqu23fYly_MRWq02DhfNxu_82jWuike8KEtn4gQXxQS_-Qix8g3UGBqLl0FXscvfO9S1uNjtwUT8WkPjIoQjnntfV836Gl2UULfu5jeO0cfjYjV_Tl6WT8X84SUxXOYxsTCTjolU24xxDTTnBMyMmZJzzRwXwCQV2lqrNaWcZQQYdcIZRgXR3BI-RsWgaz1s1T5Uu24J5aFSP4APawUhVqZ2SmhKJAEOBGRqDdWWpjonRjiecUFmndbdoLUP_uvg2qi2_hC6w1vFsoylLKXdEmNEhi4TfNsGV56mUqL6P6jedNWbroY_dJT7gVL5_Z_mv-3fJ52HqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882424111</pqid></control><display><type>article</type><title>The Inhomogeneity Effect. II. Rotational and Orbital States Impact Planetary Cooling</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Xi</creator><creatorcontrib>Zhang, Xi</creatorcontrib><description>We generalize the theory of the inhomogeneity effect to enable comparison among different inhomogeneous planets. A metric of inhomogeneity based on the cumulative distribution function is applied to investigate the dependence of planetary cooling on previously overlooked parameters. The mean surface temperature of airless planets increases with rotational rate and surface thermal inertia, which bounds the value in the tidally locked configuration and the equilibrium temperature. Using an analytical model, we demonstrate that the internal heat flux of giant planets exhibits significant spatial variability, primarily emitted from the nightside and high-latitude regions acting as radiator fins . Given a horizontally uniform interior temperature in the convective zone, the outgoing internal flux increases up to several folds as the inhomogeneity of the incoming stellar flux increases. The enhancement decreases with increasing heat redistribution through planetary dynamics or rotation. The outgoing internal flux on rapidly rotating planets generally increases with planetary obliquity and orbital eccentricity. The radiative timescale and true anomaly of the vernal equinox also play significant roles. If the radiative timescale is long, the outgoing internal flux shows a slightly decreasing but nonlinear trend with obliquity. Our findings indicate that rotational and orbital states greatly influence the cooling of planets and impact the interior evolution of giant planets, particularly for tidally locked planets and planets with high eccentricity and obliquity (such as Uranus), as well as the spatial and temporal variations of their cooling fluxes.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ace780</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmospheric evolution ; Cooling ; Distribution functions ; Exoplanet atmospheres ; Fins ; Fluctuations ; Heat flux ; Inhomogeneity ; Jupiter ; Obliquity ; Planetary atmospheres ; Planetary evolution ; Planetary rotation ; Planets ; Radiators ; Rotational states ; Spatial variability ; Surface temperature ; Thermal inertia ; Time ; Vernal equinox</subject><ispartof>The Astrophysical journal, 2023-11, Vol.957 (1), p.21</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-da67e254bd823ba1930ac62cf33b2e35a2715bdddbb113280a21e5ec2150b3d03</citedby><cites>FETCH-LOGICAL-c379t-da67e254bd823ba1930ac62cf33b2e35a2715bdddbb113280a21e5ec2150b3d03</cites><orcidid>0000-0002-8706-6963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ace780/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27903,27904,38869,53845</link.rule.ids></links><search><creatorcontrib>Zhang, Xi</creatorcontrib><title>The Inhomogeneity Effect. II. Rotational and Orbital States Impact Planetary Cooling</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We generalize the theory of the inhomogeneity effect to enable comparison among different inhomogeneous planets. A metric of inhomogeneity based on the cumulative distribution function is applied to investigate the dependence of planetary cooling on previously overlooked parameters. The mean surface temperature of airless planets increases with rotational rate and surface thermal inertia, which bounds the value in the tidally locked configuration and the equilibrium temperature. Using an analytical model, we demonstrate that the internal heat flux of giant planets exhibits significant spatial variability, primarily emitted from the nightside and high-latitude regions acting as radiator fins . Given a horizontally uniform interior temperature in the convective zone, the outgoing internal flux increases up to several folds as the inhomogeneity of the incoming stellar flux increases. The enhancement decreases with increasing heat redistribution through planetary dynamics or rotation. The outgoing internal flux on rapidly rotating planets generally increases with planetary obliquity and orbital eccentricity. The radiative timescale and true anomaly of the vernal equinox also play significant roles. If the radiative timescale is long, the outgoing internal flux shows a slightly decreasing but nonlinear trend with obliquity. Our findings indicate that rotational and orbital states greatly influence the cooling of planets and impact the interior evolution of giant planets, particularly for tidally locked planets and planets with high eccentricity and obliquity (such as Uranus), as well as the spatial and temporal variations of their cooling fluxes.</description><subject>Astrophysics</subject><subject>Atmospheric evolution</subject><subject>Cooling</subject><subject>Distribution functions</subject><subject>Exoplanet atmospheres</subject><subject>Fins</subject><subject>Fluctuations</subject><subject>Heat flux</subject><subject>Inhomogeneity</subject><subject>Jupiter</subject><subject>Obliquity</subject><subject>Planetary atmospheres</subject><subject>Planetary evolution</subject><subject>Planetary rotation</subject><subject>Planets</subject><subject>Radiators</subject><subject>Rotational states</subject><subject>Spatial variability</subject><subject>Surface temperature</subject><subject>Thermal inertia</subject><subject>Time</subject><subject>Vernal equinox</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1PwzAMjRBIjMGdYySudMtHs7RHNA2ohDQEQ-IWOR_dOnXNSLPD_j0tRePEyfaT37P9jNAtJROepXJKBc-SlAs5BeNkRs7Q6ASdoxEhJE1mXH5eoqu23fYly_MRWq02DhfNxu_82jWuike8KEtn4gQXxQS_-Qix8g3UGBqLl0FXscvfO9S1uNjtwUT8WkPjIoQjnntfV836Gl2UULfu5jeO0cfjYjV_Tl6WT8X84SUxXOYxsTCTjolU24xxDTTnBMyMmZJzzRwXwCQV2lqrNaWcZQQYdcIZRgXR3BI-RsWgaz1s1T5Uu24J5aFSP4APawUhVqZ2SmhKJAEOBGRqDdWWpjonRjiecUFmndbdoLUP_uvg2qi2_hC6w1vFsoylLKXdEmNEhi4TfNsGV56mUqL6P6jedNWbroY_dJT7gVL5_Z_mv-3fJ52HqA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Xi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8706-6963</orcidid></search><sort><creationdate>20231101</creationdate><title>The Inhomogeneity Effect. II. Rotational and Orbital States Impact Planetary Cooling</title><author>Zhang, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-da67e254bd823ba1930ac62cf33b2e35a2715bdddbb113280a21e5ec2150b3d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Atmospheric evolution</topic><topic>Cooling</topic><topic>Distribution functions</topic><topic>Exoplanet atmospheres</topic><topic>Fins</topic><topic>Fluctuations</topic><topic>Heat flux</topic><topic>Inhomogeneity</topic><topic>Jupiter</topic><topic>Obliquity</topic><topic>Planetary atmospheres</topic><topic>Planetary evolution</topic><topic>Planetary rotation</topic><topic>Planets</topic><topic>Radiators</topic><topic>Rotational states</topic><topic>Spatial variability</topic><topic>Surface temperature</topic><topic>Thermal inertia</topic><topic>Time</topic><topic>Vernal equinox</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xi</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inhomogeneity Effect. II. Rotational and Orbital States Impact Planetary Cooling</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>957</volume><issue>1</issue><spage>21</spage><pages>21-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We generalize the theory of the inhomogeneity effect to enable comparison among different inhomogeneous planets. A metric of inhomogeneity based on the cumulative distribution function is applied to investigate the dependence of planetary cooling on previously overlooked parameters. The mean surface temperature of airless planets increases with rotational rate and surface thermal inertia, which bounds the value in the tidally locked configuration and the equilibrium temperature. Using an analytical model, we demonstrate that the internal heat flux of giant planets exhibits significant spatial variability, primarily emitted from the nightside and high-latitude regions acting as radiator fins . Given a horizontally uniform interior temperature in the convective zone, the outgoing internal flux increases up to several folds as the inhomogeneity of the incoming stellar flux increases. The enhancement decreases with increasing heat redistribution through planetary dynamics or rotation. The outgoing internal flux on rapidly rotating planets generally increases with planetary obliquity and orbital eccentricity. The radiative timescale and true anomaly of the vernal equinox also play significant roles. If the radiative timescale is long, the outgoing internal flux shows a slightly decreasing but nonlinear trend with obliquity. Our findings indicate that rotational and orbital states greatly influence the cooling of planets and impact the interior evolution of giant planets, particularly for tidally locked planets and planets with high eccentricity and obliquity (such as Uranus), as well as the spatial and temporal variations of their cooling fluxes.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ace780</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8706-6963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2023-11, Vol.957 (1), p.21
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ace780
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Astrophysics
Atmospheric evolution
Cooling
Distribution functions
Exoplanet atmospheres
Fins
Fluctuations
Heat flux
Inhomogeneity
Jupiter
Obliquity
Planetary atmospheres
Planetary evolution
Planetary rotation
Planets
Radiators
Rotational states
Spatial variability
Surface temperature
Thermal inertia
Time
Vernal equinox
title The Inhomogeneity Effect. II. Rotational and Orbital States Impact Planetary Cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inhomogeneity%20Effect.%20II.%20Rotational%20and%20Orbital%20States%20Impact%20Planetary%20Cooling&rft.jtitle=The%20Astrophysical%20journal&rft.au=Zhang,%20Xi&rft.date=2023-11-01&rft.volume=957&rft.issue=1&rft.spage=21&rft.pages=21-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ace780&rft_dat=%3Cproquest_iop_j%3E2882424111%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882424111&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5b1070a3a0a74dc1bd14b90c5e383506&rfr_iscdi=true