How Do Magnetic Field Models Affect Astrophysical Limits on Light Axion-like Particles? An X-Ray Case Study with NGC 1275
Axion-like particles (ALPs) are a well-motivated extension to the standard model of particle physics, and X-ray observations of cluster-hosted AGN currently place the most stringent constraints on the ALP coupling to electromagnetism, g a γ , for very light ALPs ( m a ≲ 10 −11 eV). We revisit limits...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-05, Vol.930 (1), p.90 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | The Astrophysical journal |
container_volume | 930 |
creator | Matthews, James H. Reynolds, Christopher S. Marsh, M. C. David Sisk-Reynés, Júlia Rodman, Payton E. |
description | Axion-like particles (ALPs) are a well-motivated extension to the standard model of particle physics, and X-ray observations of cluster-hosted AGN currently place the most stringent constraints on the ALP coupling to electromagnetism,
g
a
γ
, for very light ALPs (
m
a
≲ 10
−11
eV). We revisit limits obtained by Reynolds et al. using Chandra X-ray grating spectroscopy of NGC 1275, the central AGN in the Perseus cluster, examining the impact of the X-ray spectral model and magnetic field model. We also present a new publicly available code,
ALPro
, which we use to solve the ALP propagation problem. We discuss evidence for turbulent magnetic fields in Perseus and show that it can be important to resolve the magnetic field structure on scales below the coherence length. We reanalyze the NGC 1275 X-ray spectra using an improved data reduction and baseline spectral model. We find the limits are insensitive to whether a partially covering absorber is used in the fits. At low
m
a
(
m
a
≲ 10
−13
eV), we find marginally weaker limits on
g
a
γ
(by 0.1–0.3 dex) with different magnetic field models, compared to Model B from Reynolds et al. (2020). A Gaussian random field (GRF) model designed to mimic ∼50 kpc scale coherent structures also results in only slightly weaker limits. We conclude that the existing Model B limits are robust assuming that
β
pl
≈ 100, and are insensitive to whether cell-based or GRF methods are used. However, astrophysical uncertainties regarding the strength and structure of cluster magnetic fields persist, motivating high-sensitivity RM observations and tighter constraints on the radial profile of
β
pl
. |
doi_str_mv | 10.3847/1538-4357/ac5625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac5625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660117913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-9fdab1714d843cd37af291b8dc4e1030ab28d85e8c1608e23d58f46094d90dc83</originalsourceid><addsrcrecordid>eNp1kc1LwzAYxoMoOKd3jwGv1iVN2qYnKZubwvzAL7yFLEm3zK6pScvsf2_LZJ48vV8_Hh6eF4BzjK4Io8kIR4QFlETJSMgoDqMDMNivDsEAIUSDmCQfx-DE-3U_hmk6AO2t3cKJhfdiWeraSDg1ulDw3ipdeJjluZY1zHztbLVqvZGigHOzMbWHtuy65aq7fhtbBoX51PBJuE6j0P4aZiX8CJ5FC8fCa_hSN6qFW1Ov4MNsDHGYRKfgKBeF12e_dQjepjev49tg_ji7G2fzQBKW1EGaK7HACaaKUSIVSUQepnjBlKQaI4LEImSKRZpJHCOmQ6IiltMYpVSlSElGhuByp-u3umoWvHJmI1zLrTB8Yt4zbt2S-4aHiDJEOvxih1fOfjXa13xtG1d2DnkYxwjjJMU9hXaUdNZ7p_O9LEa8_wfvw-d9-Hz3jz8fxlZ_mv_iP2c9iYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660117913</pqid></control><display><type>article</type><title>How Do Magnetic Field Models Affect Astrophysical Limits on Light Axion-like Particles? An X-Ray Case Study with NGC 1275</title><source>DOAJ Directory of Open Access Journals</source><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>EZB Electronic Journals Library</source><creator>Matthews, James H. ; Reynolds, Christopher S. ; Marsh, M. C. David ; Sisk-Reynés, Júlia ; Rodman, Payton E.</creator><creatorcontrib>Matthews, James H. ; Reynolds, Christopher S. ; Marsh, M. C. David ; Sisk-Reynés, Júlia ; Rodman, Payton E.</creatorcontrib><description>Axion-like particles (ALPs) are a well-motivated extension to the standard model of particle physics, and X-ray observations of cluster-hosted AGN currently place the most stringent constraints on the ALP coupling to electromagnetism,
g
a
γ
, for very light ALPs (
m
a
≲ 10
−11
eV). We revisit limits obtained by Reynolds et al. using Chandra X-ray grating spectroscopy of NGC 1275, the central AGN in the Perseus cluster, examining the impact of the X-ray spectral model and magnetic field model. We also present a new publicly available code,
ALPro
, which we use to solve the ALP propagation problem. We discuss evidence for turbulent magnetic fields in Perseus and show that it can be important to resolve the magnetic field structure on scales below the coherence length. We reanalyze the NGC 1275 X-ray spectra using an improved data reduction and baseline spectral model. We find the limits are insensitive to whether a partially covering absorber is used in the fits. At low
m
a
(
m
a
≲ 10
−13
eV), we find marginally weaker limits on
g
a
γ
(by 0.1–0.3 dex) with different magnetic field models, compared to Model B from Reynolds et al. (2020). A Gaussian random field (GRF) model designed to mimic ∼50 kpc scale coherent structures also results in only slightly weaker limits. We conclude that the existing Model B limits are robust assuming that
β
pl
≈ 100, and are insensitive to whether cell-based or GRF methods are used. However, astrophysical uncertainties regarding the strength and structure of cluster magnetic fields persist, motivating high-sensitivity RM observations and tighter constraints on the radial profile of
β
pl
.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac5625</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active galactic nuclei ; Astronomical models ; Astrophysics ; Clusters ; Coherence length ; Dark matter ; Data reduction ; Electromagnetism ; Extragalactic magnetic fields ; Fields (mathematics) ; Intracluster medium ; Magnetic fields ; Modelling ; Particle astrophysics ; Particle physics ; Spectroscopy ; Spectrum analysis ; Standard model (particle physics) ; X ray spectra ; X-ray active galactic nuclei ; X-rays</subject><ispartof>The Astrophysical journal, 2022-05, Vol.930 (1), p.90</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-9fdab1714d843cd37af291b8dc4e1030ab28d85e8c1608e23d58f46094d90dc83</citedby><cites>FETCH-LOGICAL-c387t-9fdab1714d843cd37af291b8dc4e1030ab28d85e8c1608e23d58f46094d90dc83</cites><orcidid>0000-0002-1510-4860 ; 0000-0003-3814-6796 ; 0000-0002-3493-7737 ; 0000-0001-7271-4115 ; 0000-0002-1624-9359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac5625/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,550,776,780,860,881,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-204803$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthews, James H.</creatorcontrib><creatorcontrib>Reynolds, Christopher S.</creatorcontrib><creatorcontrib>Marsh, M. C. David</creatorcontrib><creatorcontrib>Sisk-Reynés, Júlia</creatorcontrib><creatorcontrib>Rodman, Payton E.</creatorcontrib><title>How Do Magnetic Field Models Affect Astrophysical Limits on Light Axion-like Particles? An X-Ray Case Study with NGC 1275</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Axion-like particles (ALPs) are a well-motivated extension to the standard model of particle physics, and X-ray observations of cluster-hosted AGN currently place the most stringent constraints on the ALP coupling to electromagnetism,
g
a
γ
, for very light ALPs (
m
a
≲ 10
−11
eV). We revisit limits obtained by Reynolds et al. using Chandra X-ray grating spectroscopy of NGC 1275, the central AGN in the Perseus cluster, examining the impact of the X-ray spectral model and magnetic field model. We also present a new publicly available code,
ALPro
, which we use to solve the ALP propagation problem. We discuss evidence for turbulent magnetic fields in Perseus and show that it can be important to resolve the magnetic field structure on scales below the coherence length. We reanalyze the NGC 1275 X-ray spectra using an improved data reduction and baseline spectral model. We find the limits are insensitive to whether a partially covering absorber is used in the fits. At low
m
a
(
m
a
≲ 10
−13
eV), we find marginally weaker limits on
g
a
γ
(by 0.1–0.3 dex) with different magnetic field models, compared to Model B from Reynolds et al. (2020). A Gaussian random field (GRF) model designed to mimic ∼50 kpc scale coherent structures also results in only slightly weaker limits. We conclude that the existing Model B limits are robust assuming that
β
pl
≈ 100, and are insensitive to whether cell-based or GRF methods are used. However, astrophysical uncertainties regarding the strength and structure of cluster magnetic fields persist, motivating high-sensitivity RM observations and tighter constraints on the radial profile of
β
pl
.</description><subject>Active galactic nuclei</subject><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Clusters</subject><subject>Coherence length</subject><subject>Dark matter</subject><subject>Data reduction</subject><subject>Electromagnetism</subject><subject>Extragalactic magnetic fields</subject><subject>Fields (mathematics)</subject><subject>Intracluster medium</subject><subject>Magnetic fields</subject><subject>Modelling</subject><subject>Particle astrophysics</subject><subject>Particle physics</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Standard model (particle physics)</subject><subject>X ray spectra</subject><subject>X-ray active galactic nuclei</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>D8T</sourceid><recordid>eNp1kc1LwzAYxoMoOKd3jwGv1iVN2qYnKZubwvzAL7yFLEm3zK6pScvsf2_LZJ48vV8_Hh6eF4BzjK4Io8kIR4QFlETJSMgoDqMDMNivDsEAIUSDmCQfx-DE-3U_hmk6AO2t3cKJhfdiWeraSDg1ulDw3ipdeJjluZY1zHztbLVqvZGigHOzMbWHtuy65aq7fhtbBoX51PBJuE6j0P4aZiX8CJ5FC8fCa_hSN6qFW1Ov4MNsDHGYRKfgKBeF12e_dQjepjev49tg_ji7G2fzQBKW1EGaK7HACaaKUSIVSUQepnjBlKQaI4LEImSKRZpJHCOmQ6IiltMYpVSlSElGhuByp-u3umoWvHJmI1zLrTB8Yt4zbt2S-4aHiDJEOvxih1fOfjXa13xtG1d2DnkYxwjjJMU9hXaUdNZ7p_O9LEa8_wfvw-d9-Hz3jz8fxlZ_mv_iP2c9iYw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Matthews, James H.</creator><creator>Reynolds, Christopher S.</creator><creator>Marsh, M. C. David</creator><creator>Sisk-Reynés, Júlia</creator><creator>Rodman, Payton E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1510-4860</orcidid><orcidid>https://orcid.org/0000-0003-3814-6796</orcidid><orcidid>https://orcid.org/0000-0002-3493-7737</orcidid><orcidid>https://orcid.org/0000-0001-7271-4115</orcidid><orcidid>https://orcid.org/0000-0002-1624-9359</orcidid></search><sort><creationdate>20220501</creationdate><title>How Do Magnetic Field Models Affect Astrophysical Limits on Light Axion-like Particles? An X-Ray Case Study with NGC 1275</title><author>Matthews, James H. ; Reynolds, Christopher S. ; Marsh, M. C. David ; Sisk-Reynés, Júlia ; Rodman, Payton E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-9fdab1714d843cd37af291b8dc4e1030ab28d85e8c1608e23d58f46094d90dc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active galactic nuclei</topic><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Clusters</topic><topic>Coherence length</topic><topic>Dark matter</topic><topic>Data reduction</topic><topic>Electromagnetism</topic><topic>Extragalactic magnetic fields</topic><topic>Fields (mathematics)</topic><topic>Intracluster medium</topic><topic>Magnetic fields</topic><topic>Modelling</topic><topic>Particle astrophysics</topic><topic>Particle physics</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Standard model (particle physics)</topic><topic>X ray spectra</topic><topic>X-ray active galactic nuclei</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, James H.</creatorcontrib><creatorcontrib>Reynolds, Christopher S.</creatorcontrib><creatorcontrib>Marsh, M. C. David</creatorcontrib><creatorcontrib>Sisk-Reynés, Júlia</creatorcontrib><creatorcontrib>Rodman, Payton E.</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, James H.</au><au>Reynolds, Christopher S.</au><au>Marsh, M. C. David</au><au>Sisk-Reynés, Júlia</au><au>Rodman, Payton E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Do Magnetic Field Models Affect Astrophysical Limits on Light Axion-like Particles? An X-Ray Case Study with NGC 1275</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>930</volume><issue>1</issue><spage>90</spage><pages>90-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Axion-like particles (ALPs) are a well-motivated extension to the standard model of particle physics, and X-ray observations of cluster-hosted AGN currently place the most stringent constraints on the ALP coupling to electromagnetism,
g
a
γ
, for very light ALPs (
m
a
≲ 10
−11
eV). We revisit limits obtained by Reynolds et al. using Chandra X-ray grating spectroscopy of NGC 1275, the central AGN in the Perseus cluster, examining the impact of the X-ray spectral model and magnetic field model. We also present a new publicly available code,
ALPro
, which we use to solve the ALP propagation problem. We discuss evidence for turbulent magnetic fields in Perseus and show that it can be important to resolve the magnetic field structure on scales below the coherence length. We reanalyze the NGC 1275 X-ray spectra using an improved data reduction and baseline spectral model. We find the limits are insensitive to whether a partially covering absorber is used in the fits. At low
m
a
(
m
a
≲ 10
−13
eV), we find marginally weaker limits on
g
a
γ
(by 0.1–0.3 dex) with different magnetic field models, compared to Model B from Reynolds et al. (2020). A Gaussian random field (GRF) model designed to mimic ∼50 kpc scale coherent structures also results in only slightly weaker limits. We conclude that the existing Model B limits are robust assuming that
β
pl
≈ 100, and are insensitive to whether cell-based or GRF methods are used. However, astrophysical uncertainties regarding the strength and structure of cluster magnetic fields persist, motivating high-sensitivity RM observations and tighter constraints on the radial profile of
β
pl
.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac5625</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1510-4860</orcidid><orcidid>https://orcid.org/0000-0003-3814-6796</orcidid><orcidid>https://orcid.org/0000-0002-3493-7737</orcidid><orcidid>https://orcid.org/0000-0001-7271-4115</orcidid><orcidid>https://orcid.org/0000-0002-1624-9359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-05, Vol.930 (1), p.90 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac5625 |
source | DOAJ Directory of Open Access Journals; IOP Publishing; Alma/SFX Local Collection; SWEPUB Freely available online; EZB Electronic Journals Library |
subjects | Active galactic nuclei Astronomical models Astrophysics Clusters Coherence length Dark matter Data reduction Electromagnetism Extragalactic magnetic fields Fields (mathematics) Intracluster medium Magnetic fields Modelling Particle astrophysics Particle physics Spectroscopy Spectrum analysis Standard model (particle physics) X ray spectra X-ray active galactic nuclei X-rays |
title | How Do Magnetic Field Models Affect Astrophysical Limits on Light Axion-like Particles? An X-Ray Case Study with NGC 1275 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Do%20Magnetic%20Field%20Models%20Affect%20Astrophysical%20Limits%20on%20Light%20Axion-like%20Particles?%20An%20X-Ray%20Case%20Study%20with%20NGC%201275&rft.jtitle=The%20Astrophysical%20journal&rft.au=Matthews,%20James%20H.&rft.date=2022-05-01&rft.volume=930&rft.issue=1&rft.spage=90&rft.pages=90-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac5625&rft_dat=%3Cproquest_iop_j%3E2660117913%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660117913&rft_id=info:pmid/&rfr_iscdi=true |