Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers
We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at t = 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Ma...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-03, Vol.928 (1), p.64 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 64 |
container_title | The Astrophysical journal |
container_volume | 928 |
creator | Desjacques, Vincent Nusser, Adi Bühler, Robin |
description | We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at
t
= 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers
≪
1
, the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary. |
doi_str_mv | 10.3847/1538-4357/ac5519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac5519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644422830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgunr3WNCjddNk0jbHZXVVWFH8AG8hmybapdvUJBX6722t6EWcy5t5897APISOE3xOc8hmCaN5DJRlM6kYS_gOmvxQu2iCMYY4pdnLPjrwfjOMhPMJepjXsupCqaJHW7WhtHUUbBTedHTR1XJbKllFS1eqr828h_o16rtF6VRbSVd10a39GMh77ULr1tr5Q7RnZOX10TdO0fPy8mlxHa_urm4W81WsKOYhzjQzKQdIFNFGK0lAFbDGnGdpQZlUvFj3ZXBusgRyzZgmDAguCGEUIMN0ik7Gu42z7632QWxs6_p3vCApABCS00GFR5Vy1nunjWhcuZWuEwkWQ3JiiEkMMYkxud5yNlpK2_ze_Ed--odcNhvBSS4SkYJoCkM_AenLe2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644422830</pqid></control><display><type>article</type><title>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Desjacques, Vincent ; Nusser, Adi ; Bühler, Robin</creator><creatorcontrib>Desjacques, Vincent ; Nusser, Adi ; Bühler, Robin</creatorcontrib><description>We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at
t
= 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers
≪
1
, the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac5519</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Circular orbits ; Compact binary stars ; Divergence ; Dynamical friction ; Exact solutions ; Friction ; Hydrodynamics ; Mathematical analysis ; Multipoles ; Numerical simulations ; Perturbation ; Steady state</subject><ispartof>The Astrophysical journal, 2022-03, Vol.928 (1), p.64</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</citedby><cites>FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</cites><orcidid>0000-0003-2062-8172 ; 0000-0002-8272-4779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac5519/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Desjacques, Vincent</creatorcontrib><creatorcontrib>Nusser, Adi</creatorcontrib><creatorcontrib>Bühler, Robin</creatorcontrib><title>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at
t
= 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers
≪
1
, the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary.</description><subject>Astrophysics</subject><subject>Circular orbits</subject><subject>Compact binary stars</subject><subject>Divergence</subject><subject>Dynamical friction</subject><subject>Exact solutions</subject><subject>Friction</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Multipoles</subject><subject>Numerical simulations</subject><subject>Perturbation</subject><subject>Steady state</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9UE1LxDAQDaLgunr3WNCjddNk0jbHZXVVWFH8AG8hmybapdvUJBX6722t6EWcy5t5897APISOE3xOc8hmCaN5DJRlM6kYS_gOmvxQu2iCMYY4pdnLPjrwfjOMhPMJepjXsupCqaJHW7WhtHUUbBTedHTR1XJbKllFS1eqr828h_o16rtF6VRbSVd10a39GMh77ULr1tr5Q7RnZOX10TdO0fPy8mlxHa_urm4W81WsKOYhzjQzKQdIFNFGK0lAFbDGnGdpQZlUvFj3ZXBusgRyzZgmDAguCGEUIMN0ik7Gu42z7632QWxs6_p3vCApABCS00GFR5Vy1nunjWhcuZWuEwkWQ3JiiEkMMYkxud5yNlpK2_ze_Ed--odcNhvBSS4SkYJoCkM_AenLe2Y</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Desjacques, Vincent</creator><creator>Nusser, Adi</creator><creator>Bühler, Robin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2062-8172</orcidid><orcidid>https://orcid.org/0000-0002-8272-4779</orcidid></search><sort><creationdate>20220301</creationdate><title>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</title><author>Desjacques, Vincent ; Nusser, Adi ; Bühler, Robin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Circular orbits</topic><topic>Compact binary stars</topic><topic>Divergence</topic><topic>Dynamical friction</topic><topic>Exact solutions</topic><topic>Friction</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Multipoles</topic><topic>Numerical simulations</topic><topic>Perturbation</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desjacques, Vincent</creatorcontrib><creatorcontrib>Nusser, Adi</creatorcontrib><creatorcontrib>Bühler, Robin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desjacques, Vincent</au><au>Nusser, Adi</au><au>Bühler, Robin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>928</volume><issue>1</issue><spage>64</spage><pages>64-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at
t
= 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers
≪
1
, the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac5519</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2062-8172</orcidid><orcidid>https://orcid.org/0000-0002-8272-4779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-03, Vol.928 (1), p.64 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac5519 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Astrophysics Circular orbits Compact binary stars Divergence Dynamical friction Exact solutions Friction Hydrodynamics Mathematical analysis Multipoles Numerical simulations Perturbation Steady state |
title | Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20Solution%20to%20the%20Dynamical%20Friction%20Acting%20on%20Circularly%20Moving%20Perturbers&rft.jtitle=The%20Astrophysical%20journal&rft.au=Desjacques,%20Vincent&rft.date=2022-03-01&rft.volume=928&rft.issue=1&rft.spage=64&rft.pages=64-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac5519&rft_dat=%3Cproquest_iop_j%3E2644422830%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644422830&rft_id=info:pmid/&rfr_iscdi=true |