Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers

We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at t = 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-03, Vol.928 (1), p.64
Hauptverfasser: Desjacques, Vincent, Nusser, Adi, Bühler, Robin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 64
container_title The Astrophysical journal
container_volume 928
creator Desjacques, Vincent
Nusser, Adi
Bühler, Robin
description We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at t = 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers  ≪ 1 , the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary.
doi_str_mv 10.3847/1538-4357/ac5519
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac5519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644422830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgunr3WNCjddNk0jbHZXVVWFH8AG8hmybapdvUJBX6722t6EWcy5t5897APISOE3xOc8hmCaN5DJRlM6kYS_gOmvxQu2iCMYY4pdnLPjrwfjOMhPMJepjXsupCqaJHW7WhtHUUbBTedHTR1XJbKllFS1eqr828h_o16rtF6VRbSVd10a39GMh77ULr1tr5Q7RnZOX10TdO0fPy8mlxHa_urm4W81WsKOYhzjQzKQdIFNFGK0lAFbDGnGdpQZlUvFj3ZXBusgRyzZgmDAguCGEUIMN0ik7Gu42z7632QWxs6_p3vCApABCS00GFR5Vy1nunjWhcuZWuEwkWQ3JiiEkMMYkxud5yNlpK2_ze_Ed--odcNhvBSS4SkYJoCkM_AenLe2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644422830</pqid></control><display><type>article</type><title>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Desjacques, Vincent ; Nusser, Adi ; Bühler, Robin</creator><creatorcontrib>Desjacques, Vincent ; Nusser, Adi ; Bühler, Robin</creatorcontrib><description>We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at t = 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers  ≪ 1 , the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac5519</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Circular orbits ; Compact binary stars ; Divergence ; Dynamical friction ; Exact solutions ; Friction ; Hydrodynamics ; Mathematical analysis ; Multipoles ; Numerical simulations ; Perturbation ; Steady state</subject><ispartof>The Astrophysical journal, 2022-03, Vol.928 (1), p.64</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</citedby><cites>FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</cites><orcidid>0000-0003-2062-8172 ; 0000-0002-8272-4779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac5519/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Desjacques, Vincent</creatorcontrib><creatorcontrib>Nusser, Adi</creatorcontrib><creatorcontrib>Bühler, Robin</creatorcontrib><title>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at t = 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers  ≪ 1 , the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary.</description><subject>Astrophysics</subject><subject>Circular orbits</subject><subject>Compact binary stars</subject><subject>Divergence</subject><subject>Dynamical friction</subject><subject>Exact solutions</subject><subject>Friction</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Multipoles</subject><subject>Numerical simulations</subject><subject>Perturbation</subject><subject>Steady state</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9UE1LxDAQDaLgunr3WNCjddNk0jbHZXVVWFH8AG8hmybapdvUJBX6722t6EWcy5t5897APISOE3xOc8hmCaN5DJRlM6kYS_gOmvxQu2iCMYY4pdnLPjrwfjOMhPMJepjXsupCqaJHW7WhtHUUbBTedHTR1XJbKllFS1eqr828h_o16rtF6VRbSVd10a39GMh77ULr1tr5Q7RnZOX10TdO0fPy8mlxHa_urm4W81WsKOYhzjQzKQdIFNFGK0lAFbDGnGdpQZlUvFj3ZXBusgRyzZgmDAguCGEUIMN0ik7Gu42z7632QWxs6_p3vCApABCS00GFR5Vy1nunjWhcuZWuEwkWQ3JiiEkMMYkxud5yNlpK2_ze_Ed--odcNhvBSS4SkYJoCkM_AenLe2Y</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Desjacques, Vincent</creator><creator>Nusser, Adi</creator><creator>Bühler, Robin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2062-8172</orcidid><orcidid>https://orcid.org/0000-0002-8272-4779</orcidid></search><sort><creationdate>20220301</creationdate><title>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</title><author>Desjacques, Vincent ; Nusser, Adi ; Bühler, Robin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-7e5f69441c2efeca24cd4b09976d35ac9dbbbbf08f7148e55e25420d225344703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Circular orbits</topic><topic>Compact binary stars</topic><topic>Divergence</topic><topic>Dynamical friction</topic><topic>Exact solutions</topic><topic>Friction</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Multipoles</topic><topic>Numerical simulations</topic><topic>Perturbation</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desjacques, Vincent</creatorcontrib><creatorcontrib>Nusser, Adi</creatorcontrib><creatorcontrib>Bühler, Robin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desjacques, Vincent</au><au>Nusser, Adi</au><au>Bühler, Robin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>928</volume><issue>1</issue><spage>64</spage><pages>64-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present an analytic approach to the dynamical friction (DF) acting on a circularly moving point mass perturber in a gaseous medium. We demonstrate that, when the perturber is turned on at t = 0, steady state (infinite time perturbation) is achieved after exactly one sound-crossing time. At low Mach numbers  ≪ 1 , the circular-motion steady-state DF converges to the linear-motion, finite time perturbation expression. The analytic results describe both the radial and tangential forces on the perturbers caused by the backreaction of the wake propagating in the medium. The radial force is directed inward, toward the motion center, and is dominant at large Mach numbers. For subsonic motion, this component is negligible. For moderate and low Mach numbers, the tangential force is stronger and opposes the motion of the perturber. The analytic solution to the circular-orbit DF suffers from a logarithmic divergence in the supersonic regime. This divergence appears at short distances from the perturber solely (unlike the linear-motion result, which is also divergent at large distances) and can be encoded in a maximum multipole. This is helpful to assess the resolution dependence of numerical simulations implementing DF at the level of Liénard–Wiechert potentials. We also show how our approach can be generalized to calculate the DF acting on a compact circular binary.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac5519</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2062-8172</orcidid><orcidid>https://orcid.org/0000-0002-8272-4779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-03, Vol.928 (1), p.64
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ac5519
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astrophysics
Circular orbits
Compact binary stars
Divergence
Dynamical friction
Exact solutions
Friction
Hydrodynamics
Mathematical analysis
Multipoles
Numerical simulations
Perturbation
Steady state
title Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20Solution%20to%20the%20Dynamical%20Friction%20Acting%20on%20Circularly%20Moving%20Perturbers&rft.jtitle=The%20Astrophysical%20journal&rft.au=Desjacques,%20Vincent&rft.date=2022-03-01&rft.volume=928&rft.issue=1&rft.spage=64&rft.pages=64-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac5519&rft_dat=%3Cproquest_iop_j%3E2644422830%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644422830&rft_id=info:pmid/&rfr_iscdi=true