Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium
Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts o...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-03, Vol.927 (2), p.220 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 220 |
container_title | The Astrophysical journal |
container_volume | 927 |
creator | den Hartogh, Jacqueline Petö, Maria K. Lawson, Thomas Sieverding, Andre Brinkman, Hannah Pignatari, Marco Lugaro, Maria |
description | Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al. |
doi_str_mv | 10.3847/1538-4357/ac4965 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac4965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640385117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMedoyXErQE_EifmhiJeUgsHeuBmucmmuErsYCdFfAJ_TUIRXBCn3VnNzI4GoRNKznkWpxc04VkU8yS90EUsRbKDJj-nXTQhhMSR4OnzPjoIYT1CJuUEfeSuabU3wVm8hO4NwOLceYgKV9e6DYCf-ha8dRuNH_qiBhfebfcCwQSsbYnn0IHzpsBPnfZlHzp867Wx4RLf2w2Ezqx0Z-wKz_XKDqK-meKrum-M_VpHh_zFu2ZAR2iv0nWA4-95iBY314v8Lpo93t7nV7Oo4BnpomrIPWTPkgyEKKmsEiIKKmMCUstMMr4sqUhYVRJBl5AyDTJeShAZSQrGYn6ITre2rXev_ZBQrV3v7fBRMRETniWUpgOLbFmFdyF4qFTrTaP9u6JEjX2rsVw1lqu2fQ-S6VZiXPvr-Q_97A-6btdKslQxxRhRbVnxT_bsj4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640385117</pqid></control><display><type>article</type><title>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>den Hartogh, Jacqueline ; Petö, Maria K. ; Lawson, Thomas ; Sieverding, Andre ; Brinkman, Hannah ; Pignatari, Marco ; Lugaro, Maria</creator><creatorcontrib>den Hartogh, Jacqueline ; Petö, Maria K. ; Lawson, Thomas ; Sieverding, Andre ; Brinkman, Hannah ; Pignatari, Marco ; Lugaro, Maria</creatorcontrib><description>Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac4965</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aluminum ; Anomalies ; Ashes ; Astrophysics ; Atomic properties ; Chromite ; Chromium ; Composition ; Core-collapse supernovae ; Explosive nucleosynthesis ; Interstellar medium ; Isotopes ; Magnesium ; Metallicity ; Meteorites ; Meteors ; Nuclear fusion ; Nucleosynthesis ; Planet formation ; Protoplanetary disks ; Solar system ; Stellar astronomy ; Stellar nucleosynthesis ; Supernova ; Supernovae</subject><ispartof>The Astrophysical journal, 2022-03, Vol.927 (2), p.220</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</citedby><cites>FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</cites><orcidid>0000-0003-4831-9304 ; 0000-0002-9048-6010 ; 0000-0001-8235-5910 ; 0000-0003-1976-9947 ; 0000-0002-1609-6938 ; 0000-0002-6972-3958 ; 0000-0002-7634-2432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac4965/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27922,27923,38888,53865</link.rule.ids></links><search><creatorcontrib>den Hartogh, Jacqueline</creatorcontrib><creatorcontrib>Petö, Maria K.</creatorcontrib><creatorcontrib>Lawson, Thomas</creatorcontrib><creatorcontrib>Sieverding, Andre</creatorcontrib><creatorcontrib>Brinkman, Hannah</creatorcontrib><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><title>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.</description><subject>Aluminum</subject><subject>Anomalies</subject><subject>Ashes</subject><subject>Astrophysics</subject><subject>Atomic properties</subject><subject>Chromite</subject><subject>Chromium</subject><subject>Composition</subject><subject>Core-collapse supernovae</subject><subject>Explosive nucleosynthesis</subject><subject>Interstellar medium</subject><subject>Isotopes</subject><subject>Magnesium</subject><subject>Metallicity</subject><subject>Meteorites</subject><subject>Meteors</subject><subject>Nuclear fusion</subject><subject>Nucleosynthesis</subject><subject>Planet formation</subject><subject>Protoplanetary disks</subject><subject>Solar system</subject><subject>Stellar astronomy</subject><subject>Stellar nucleosynthesis</subject><subject>Supernova</subject><subject>Supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9UMtOwzAQtBBIlMedoyXErQE_EifmhiJeUgsHeuBmucmmuErsYCdFfAJ_TUIRXBCn3VnNzI4GoRNKznkWpxc04VkU8yS90EUsRbKDJj-nXTQhhMSR4OnzPjoIYT1CJuUEfeSuabU3wVm8hO4NwOLceYgKV9e6DYCf-ha8dRuNH_qiBhfebfcCwQSsbYnn0IHzpsBPnfZlHzp867Wx4RLf2w2Ezqx0Z-wKz_XKDqK-meKrum-M_VpHh_zFu2ZAR2iv0nWA4-95iBY314v8Lpo93t7nV7Oo4BnpomrIPWTPkgyEKKmsEiIKKmMCUstMMr4sqUhYVRJBl5AyDTJeShAZSQrGYn6ITre2rXev_ZBQrV3v7fBRMRETniWUpgOLbFmFdyF4qFTrTaP9u6JEjX2rsVw1lqu2fQ-S6VZiXPvr-Q_97A-6btdKslQxxRhRbVnxT_bsj4c</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>den Hartogh, Jacqueline</creator><creator>Petö, Maria K.</creator><creator>Lawson, Thomas</creator><creator>Sieverding, Andre</creator><creator>Brinkman, Hannah</creator><creator>Pignatari, Marco</creator><creator>Lugaro, Maria</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4831-9304</orcidid><orcidid>https://orcid.org/0000-0002-9048-6010</orcidid><orcidid>https://orcid.org/0000-0001-8235-5910</orcidid><orcidid>https://orcid.org/0000-0003-1976-9947</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid><orcidid>https://orcid.org/0000-0002-7634-2432</orcidid></search><sort><creationdate>20220301</creationdate><title>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</title><author>den Hartogh, Jacqueline ; Petö, Maria K. ; Lawson, Thomas ; Sieverding, Andre ; Brinkman, Hannah ; Pignatari, Marco ; Lugaro, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Anomalies</topic><topic>Ashes</topic><topic>Astrophysics</topic><topic>Atomic properties</topic><topic>Chromite</topic><topic>Chromium</topic><topic>Composition</topic><topic>Core-collapse supernovae</topic><topic>Explosive nucleosynthesis</topic><topic>Interstellar medium</topic><topic>Isotopes</topic><topic>Magnesium</topic><topic>Metallicity</topic><topic>Meteorites</topic><topic>Meteors</topic><topic>Nuclear fusion</topic><topic>Nucleosynthesis</topic><topic>Planet formation</topic><topic>Protoplanetary disks</topic><topic>Solar system</topic><topic>Stellar astronomy</topic><topic>Stellar nucleosynthesis</topic><topic>Supernova</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Hartogh, Jacqueline</creatorcontrib><creatorcontrib>Petö, Maria K.</creatorcontrib><creatorcontrib>Lawson, Thomas</creatorcontrib><creatorcontrib>Sieverding, Andre</creatorcontrib><creatorcontrib>Brinkman, Hannah</creatorcontrib><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Hartogh, Jacqueline</au><au>Petö, Maria K.</au><au>Lawson, Thomas</au><au>Sieverding, Andre</au><au>Brinkman, Hannah</au><au>Pignatari, Marco</au><au>Lugaro, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>927</volume><issue>2</issue><spage>220</spage><pages>220-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac4965</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4831-9304</orcidid><orcidid>https://orcid.org/0000-0002-9048-6010</orcidid><orcidid>https://orcid.org/0000-0001-8235-5910</orcidid><orcidid>https://orcid.org/0000-0003-1976-9947</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid><orcidid>https://orcid.org/0000-0002-7634-2432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-03, Vol.927 (2), p.220 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac4965 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aluminum Anomalies Ashes Astrophysics Atomic properties Chromite Chromium Composition Core-collapse supernovae Explosive nucleosynthesis Interstellar medium Isotopes Magnesium Metallicity Meteorites Meteors Nuclear fusion Nucleosynthesis Planet formation Protoplanetary disks Solar system Stellar astronomy Stellar nucleosynthesis Supernova Supernovae |
title | Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20between%20Core-collapse%20Supernova%20Nucleosynthesis%20and%20Meteoric%20Stardust%20Grains:%20Investigating%20Magnesium,%20Aluminium,%20and%20Chromium&rft.jtitle=The%20Astrophysical%20journal&rft.au=den%20Hartogh,%20Jacqueline&rft.date=2022-03-01&rft.volume=927&rft.issue=2&rft.spage=220&rft.pages=220-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac4965&rft_dat=%3Cproquest_iop_j%3E2640385117%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640385117&rft_id=info:pmid/&rfr_iscdi=true |