Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium

Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-03, Vol.927 (2), p.220
Hauptverfasser: den Hartogh, Jacqueline, Petö, Maria K., Lawson, Thomas, Sieverding, Andre, Brinkman, Hannah, Pignatari, Marco, Lugaro, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 220
container_title The Astrophysical journal
container_volume 927
creator den Hartogh, Jacqueline
Petö, Maria K.
Lawson, Thomas
Sieverding, Andre
Brinkman, Hannah
Pignatari, Marco
Lugaro, Maria
description Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.
doi_str_mv 10.3847/1538-4357/ac4965
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac4965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640385117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMedoyXErQE_EifmhiJeUgsHeuBmucmmuErsYCdFfAJ_TUIRXBCn3VnNzI4GoRNKznkWpxc04VkU8yS90EUsRbKDJj-nXTQhhMSR4OnzPjoIYT1CJuUEfeSuabU3wVm8hO4NwOLceYgKV9e6DYCf-ha8dRuNH_qiBhfebfcCwQSsbYnn0IHzpsBPnfZlHzp867Wx4RLf2w2Ezqx0Z-wKz_XKDqK-meKrum-M_VpHh_zFu2ZAR2iv0nWA4-95iBY314v8Lpo93t7nV7Oo4BnpomrIPWTPkgyEKKmsEiIKKmMCUstMMr4sqUhYVRJBl5AyDTJeShAZSQrGYn6ITre2rXev_ZBQrV3v7fBRMRETniWUpgOLbFmFdyF4qFTrTaP9u6JEjX2rsVw1lqu2fQ-S6VZiXPvr-Q_97A-6btdKslQxxRhRbVnxT_bsj4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640385117</pqid></control><display><type>article</type><title>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>den Hartogh, Jacqueline ; Petö, Maria K. ; Lawson, Thomas ; Sieverding, Andre ; Brinkman, Hannah ; Pignatari, Marco ; Lugaro, Maria</creator><creatorcontrib>den Hartogh, Jacqueline ; Petö, Maria K. ; Lawson, Thomas ; Sieverding, Andre ; Brinkman, Hannah ; Pignatari, Marco ; Lugaro, Maria</creatorcontrib><description>Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac4965</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aluminum ; Anomalies ; Ashes ; Astrophysics ; Atomic properties ; Chromite ; Chromium ; Composition ; Core-collapse supernovae ; Explosive nucleosynthesis ; Interstellar medium ; Isotopes ; Magnesium ; Metallicity ; Meteorites ; Meteors ; Nuclear fusion ; Nucleosynthesis ; Planet formation ; Protoplanetary disks ; Solar system ; Stellar astronomy ; Stellar nucleosynthesis ; Supernova ; Supernovae</subject><ispartof>The Astrophysical journal, 2022-03, Vol.927 (2), p.220</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</citedby><cites>FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</cites><orcidid>0000-0003-4831-9304 ; 0000-0002-9048-6010 ; 0000-0001-8235-5910 ; 0000-0003-1976-9947 ; 0000-0002-1609-6938 ; 0000-0002-6972-3958 ; 0000-0002-7634-2432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac4965/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27922,27923,38888,53865</link.rule.ids></links><search><creatorcontrib>den Hartogh, Jacqueline</creatorcontrib><creatorcontrib>Petö, Maria K.</creatorcontrib><creatorcontrib>Lawson, Thomas</creatorcontrib><creatorcontrib>Sieverding, Andre</creatorcontrib><creatorcontrib>Brinkman, Hannah</creatorcontrib><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><title>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.</description><subject>Aluminum</subject><subject>Anomalies</subject><subject>Ashes</subject><subject>Astrophysics</subject><subject>Atomic properties</subject><subject>Chromite</subject><subject>Chromium</subject><subject>Composition</subject><subject>Core-collapse supernovae</subject><subject>Explosive nucleosynthesis</subject><subject>Interstellar medium</subject><subject>Isotopes</subject><subject>Magnesium</subject><subject>Metallicity</subject><subject>Meteorites</subject><subject>Meteors</subject><subject>Nuclear fusion</subject><subject>Nucleosynthesis</subject><subject>Planet formation</subject><subject>Protoplanetary disks</subject><subject>Solar system</subject><subject>Stellar astronomy</subject><subject>Stellar nucleosynthesis</subject><subject>Supernova</subject><subject>Supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9UMtOwzAQtBBIlMedoyXErQE_EifmhiJeUgsHeuBmucmmuErsYCdFfAJ_TUIRXBCn3VnNzI4GoRNKznkWpxc04VkU8yS90EUsRbKDJj-nXTQhhMSR4OnzPjoIYT1CJuUEfeSuabU3wVm8hO4NwOLceYgKV9e6DYCf-ha8dRuNH_qiBhfebfcCwQSsbYnn0IHzpsBPnfZlHzp867Wx4RLf2w2Ezqx0Z-wKz_XKDqK-meKrum-M_VpHh_zFu2ZAR2iv0nWA4-95iBY314v8Lpo93t7nV7Oo4BnpomrIPWTPkgyEKKmsEiIKKmMCUstMMr4sqUhYVRJBl5AyDTJeShAZSQrGYn6ITre2rXev_ZBQrV3v7fBRMRETniWUpgOLbFmFdyF4qFTrTaP9u6JEjX2rsVw1lqu2fQ-S6VZiXPvr-Q_97A-6btdKslQxxRhRbVnxT_bsj4c</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>den Hartogh, Jacqueline</creator><creator>Petö, Maria K.</creator><creator>Lawson, Thomas</creator><creator>Sieverding, Andre</creator><creator>Brinkman, Hannah</creator><creator>Pignatari, Marco</creator><creator>Lugaro, Maria</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4831-9304</orcidid><orcidid>https://orcid.org/0000-0002-9048-6010</orcidid><orcidid>https://orcid.org/0000-0001-8235-5910</orcidid><orcidid>https://orcid.org/0000-0003-1976-9947</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid><orcidid>https://orcid.org/0000-0002-7634-2432</orcidid></search><sort><creationdate>20220301</creationdate><title>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</title><author>den Hartogh, Jacqueline ; Petö, Maria K. ; Lawson, Thomas ; Sieverding, Andre ; Brinkman, Hannah ; Pignatari, Marco ; Lugaro, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f429042858e66d19f506c1940e9a98923bd1652fd061be72ae94b9e6805c2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Anomalies</topic><topic>Ashes</topic><topic>Astrophysics</topic><topic>Atomic properties</topic><topic>Chromite</topic><topic>Chromium</topic><topic>Composition</topic><topic>Core-collapse supernovae</topic><topic>Explosive nucleosynthesis</topic><topic>Interstellar medium</topic><topic>Isotopes</topic><topic>Magnesium</topic><topic>Metallicity</topic><topic>Meteorites</topic><topic>Meteors</topic><topic>Nuclear fusion</topic><topic>Nucleosynthesis</topic><topic>Planet formation</topic><topic>Protoplanetary disks</topic><topic>Solar system</topic><topic>Stellar astronomy</topic><topic>Stellar nucleosynthesis</topic><topic>Supernova</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Hartogh, Jacqueline</creatorcontrib><creatorcontrib>Petö, Maria K.</creatorcontrib><creatorcontrib>Lawson, Thomas</creatorcontrib><creatorcontrib>Sieverding, Andre</creatorcontrib><creatorcontrib>Brinkman, Hannah</creatorcontrib><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Hartogh, Jacqueline</au><au>Petö, Maria K.</au><au>Lawson, Thomas</au><au>Sieverding, Andre</au><au>Brinkman, Hannah</au><au>Pignatari, Marco</au><au>Lugaro, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>927</volume><issue>2</issue><spage>220</spage><pages>220-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac4965</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4831-9304</orcidid><orcidid>https://orcid.org/0000-0002-9048-6010</orcidid><orcidid>https://orcid.org/0000-0001-8235-5910</orcidid><orcidid>https://orcid.org/0000-0003-1976-9947</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid><orcidid>https://orcid.org/0000-0002-7634-2432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-03, Vol.927 (2), p.220
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ac4965
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aluminum
Anomalies
Ashes
Astrophysics
Atomic properties
Chromite
Chromium
Composition
Core-collapse supernovae
Explosive nucleosynthesis
Interstellar medium
Isotopes
Magnesium
Metallicity
Meteorites
Meteors
Nuclear fusion
Nucleosynthesis
Planet formation
Protoplanetary disks
Solar system
Stellar astronomy
Stellar nucleosynthesis
Supernova
Supernovae
title Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20between%20Core-collapse%20Supernova%20Nucleosynthesis%20and%20Meteoric%20Stardust%20Grains:%20Investigating%20Magnesium,%20Aluminium,%20and%20Chromium&rft.jtitle=The%20Astrophysical%20journal&rft.au=den%20Hartogh,%20Jacqueline&rft.date=2022-03-01&rft.volume=927&rft.issue=2&rft.spage=220&rft.pages=220-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac4965&rft_dat=%3Cproquest_iop_j%3E2640385117%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640385117&rft_id=info:pmid/&rfr_iscdi=true