Transport of Solar Energetic Particles along Stochastic Parker Spirals
It was recently shown that, owing to the turbulent nature of the solar wind, the interplanetary magnetic field lines can be well described by stochastic Parker spirals. These are realizations of Brownian diffusion on a sphere of increasing radius, superimposed on the angular drift due to the solar r...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-01, Vol.924 (2), p.120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 120 |
container_title | The Astrophysical journal |
container_volume | 924 |
creator | Bian, N. H. Li, Gang |
description | It was recently shown that, owing to the turbulent nature of the solar wind, the interplanetary magnetic field lines can be well described by stochastic Parker spirals. These are realizations of Brownian diffusion on a sphere of increasing radius, superimposed on the angular drift due to the solar rotation. In this work, we present a model for the transport of solar energetic particles along stochastic Parker spirals in the inner heliosphere. The transport model is governed by a set of four stochastic differential equations for the heliographic position
(
r
,
α
=
cos
θ
,
ϕ
)
of the guiding centers and the cosine of the pitch angle between the velocity vector and the Parker field. The model accounts for the role played by the combination of pitch angle scattering and magnetic focusing in the interplanetary medium. The effects of the dynamical evolution of the turbulence are included in the model by taking the field line angular diffusivity to be a function of the radial distance from the Sun. The heliolongitudinal distribution of particles propagating along stochastic Parker spirals is given by the wrapped Gaussian distribution. This angular distribution can also well be represented by the von Mises distribution that interpolates between the Gaussian distribution at small angular spread and the uniform distribution at large distances from the acceleration region of energetic particles in the aftermath of a solar eruption. |
doi_str_mv | 10.3847/1538-4357/ac2fab |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac2fab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622624626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b1ff3032ba0d678e3505fccdddb57463bd876cf7ffb7b1a75afdb7376675529f3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3jwHx5tpsskl2j1JaFQoKreAt5LNuXTcx2R78791li15EGHjMzG_ewAPgMke3pCz4LKekzApC-Uxq7KQ6ApOf0TGYIISKjBH-egrOUtoNLa6qCVhuomxT8LGD3sG1b2SEi9bGre1qDZ9l7KWxCcrGt1u47rx-k-mwercRrkMdZZPOwYnrxV4cdApelovN_CFbPd0_zu9WmSYl6jKVO0cQwUoiw3hpCUXUaW2MUZQXjChTcqYdd05xlUtOpTOKE84YpxRXjkzB1egbov_c29SJnd_Htn8pMMN9FQyznkIjpaNPKVonQqw_ZPwSORJDWmKIRgzRiDGt_uRmPKl9-PX8B7_-A5dhJypcCCxyjEQwjnwDTr55fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622624626</pqid></control><display><type>article</type><title>Transport of Solar Energetic Particles along Stochastic Parker Spirals</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bian, N. H. ; Li, Gang</creator><creatorcontrib>Bian, N. H. ; Li, Gang</creatorcontrib><description>It was recently shown that, owing to the turbulent nature of the solar wind, the interplanetary magnetic field lines can be well described by stochastic Parker spirals. These are realizations of Brownian diffusion on a sphere of increasing radius, superimposed on the angular drift due to the solar rotation. In this work, we present a model for the transport of solar energetic particles along stochastic Parker spirals in the inner heliosphere. The transport model is governed by a set of four stochastic differential equations for the heliographic position
(
r
,
α
=
cos
θ
,
ϕ
)
of the guiding centers and the cosine of the pitch angle between the velocity vector and the Parker field. The model accounts for the role played by the combination of pitch angle scattering and magnetic focusing in the interplanetary medium. The effects of the dynamical evolution of the turbulence are included in the model by taking the field line angular diffusivity to be a function of the radial distance from the Sun. The heliolongitudinal distribution of particles propagating along stochastic Parker spirals is given by the wrapped Gaussian distribution. This angular distribution can also well be represented by the von Mises distribution that interpolates between the Gaussian distribution at small angular spread and the uniform distribution at large distances from the acceleration region of energetic particles in the aftermath of a solar eruption.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac2fab</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Acceleration ; Angular distribution ; Angular drift ; Astrophysics ; Charged particles ; Differential equations ; Energetic particles ; Heliosphere ; Interplanetary magnetic field ; Interplanetary magnetic fields ; Interplanetary medium ; Interplanetary turbulence ; Magnetic fields ; Modelling ; Normal distribution ; Pitch (inclination) ; Solar energetic particles ; Solar magnetic field ; Solar rotation ; Solar wind ; Spirals ; Trigonometric functions ; Turbulence</subject><ispartof>The Astrophysical journal, 2022-01, Vol.924 (2), p.120</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b1ff3032ba0d678e3505fccdddb57463bd876cf7ffb7b1a75afdb7376675529f3</citedby><cites>FETCH-LOGICAL-c380t-b1ff3032ba0d678e3505fccdddb57463bd876cf7ffb7b1a75afdb7376675529f3</cites><orcidid>0000-0003-4695-8866 ; 0000-0003-0142-8669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac2fab/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,861,27905,27906,38871,53848</link.rule.ids></links><search><creatorcontrib>Bian, N. H.</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><title>Transport of Solar Energetic Particles along Stochastic Parker Spirals</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>It was recently shown that, owing to the turbulent nature of the solar wind, the interplanetary magnetic field lines can be well described by stochastic Parker spirals. These are realizations of Brownian diffusion on a sphere of increasing radius, superimposed on the angular drift due to the solar rotation. In this work, we present a model for the transport of solar energetic particles along stochastic Parker spirals in the inner heliosphere. The transport model is governed by a set of four stochastic differential equations for the heliographic position
(
r
,
α
=
cos
θ
,
ϕ
)
of the guiding centers and the cosine of the pitch angle between the velocity vector and the Parker field. The model accounts for the role played by the combination of pitch angle scattering and magnetic focusing in the interplanetary medium. The effects of the dynamical evolution of the turbulence are included in the model by taking the field line angular diffusivity to be a function of the radial distance from the Sun. The heliolongitudinal distribution of particles propagating along stochastic Parker spirals is given by the wrapped Gaussian distribution. This angular distribution can also well be represented by the von Mises distribution that interpolates between the Gaussian distribution at small angular spread and the uniform distribution at large distances from the acceleration region of energetic particles in the aftermath of a solar eruption.</description><subject>Acceleration</subject><subject>Angular distribution</subject><subject>Angular drift</subject><subject>Astrophysics</subject><subject>Charged particles</subject><subject>Differential equations</subject><subject>Energetic particles</subject><subject>Heliosphere</subject><subject>Interplanetary magnetic field</subject><subject>Interplanetary magnetic fields</subject><subject>Interplanetary medium</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Modelling</subject><subject>Normal distribution</subject><subject>Pitch (inclination)</subject><subject>Solar energetic particles</subject><subject>Solar magnetic field</subject><subject>Solar rotation</subject><subject>Solar wind</subject><subject>Spirals</subject><subject>Trigonometric functions</subject><subject>Turbulence</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kM1LAzEQxYMoWKt3jwHx5tpsskl2j1JaFQoKreAt5LNuXTcx2R78791li15EGHjMzG_ewAPgMke3pCz4LKekzApC-Uxq7KQ6ApOf0TGYIISKjBH-egrOUtoNLa6qCVhuomxT8LGD3sG1b2SEi9bGre1qDZ9l7KWxCcrGt1u47rx-k-mwercRrkMdZZPOwYnrxV4cdApelovN_CFbPd0_zu9WmSYl6jKVO0cQwUoiw3hpCUXUaW2MUZQXjChTcqYdd05xlUtOpTOKE84YpxRXjkzB1egbov_c29SJnd_Htn8pMMN9FQyznkIjpaNPKVonQqw_ZPwSORJDWmKIRgzRiDGt_uRmPKl9-PX8B7_-A5dhJypcCCxyjEQwjnwDTr55fQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bian, N. H.</creator><creator>Li, Gang</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4695-8866</orcidid><orcidid>https://orcid.org/0000-0003-0142-8669</orcidid></search><sort><creationdate>20220101</creationdate><title>Transport of Solar Energetic Particles along Stochastic Parker Spirals</title><author>Bian, N. H. ; Li, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b1ff3032ba0d678e3505fccdddb57463bd876cf7ffb7b1a75afdb7376675529f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Angular distribution</topic><topic>Angular drift</topic><topic>Astrophysics</topic><topic>Charged particles</topic><topic>Differential equations</topic><topic>Energetic particles</topic><topic>Heliosphere</topic><topic>Interplanetary magnetic field</topic><topic>Interplanetary magnetic fields</topic><topic>Interplanetary medium</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Modelling</topic><topic>Normal distribution</topic><topic>Pitch (inclination)</topic><topic>Solar energetic particles</topic><topic>Solar magnetic field</topic><topic>Solar rotation</topic><topic>Solar wind</topic><topic>Spirals</topic><topic>Trigonometric functions</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, N. H.</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, N. H.</au><au>Li, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of Solar Energetic Particles along Stochastic Parker Spirals</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>924</volume><issue>2</issue><spage>120</spage><pages>120-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>It was recently shown that, owing to the turbulent nature of the solar wind, the interplanetary magnetic field lines can be well described by stochastic Parker spirals. These are realizations of Brownian diffusion on a sphere of increasing radius, superimposed on the angular drift due to the solar rotation. In this work, we present a model for the transport of solar energetic particles along stochastic Parker spirals in the inner heliosphere. The transport model is governed by a set of four stochastic differential equations for the heliographic position
(
r
,
α
=
cos
θ
,
ϕ
)
of the guiding centers and the cosine of the pitch angle between the velocity vector and the Parker field. The model accounts for the role played by the combination of pitch angle scattering and magnetic focusing in the interplanetary medium. The effects of the dynamical evolution of the turbulence are included in the model by taking the field line angular diffusivity to be a function of the radial distance from the Sun. The heliolongitudinal distribution of particles propagating along stochastic Parker spirals is given by the wrapped Gaussian distribution. This angular distribution can also well be represented by the von Mises distribution that interpolates between the Gaussian distribution at small angular spread and the uniform distribution at large distances from the acceleration region of energetic particles in the aftermath of a solar eruption.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac2fab</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4695-8866</orcidid><orcidid>https://orcid.org/0000-0003-0142-8669</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-01, Vol.924 (2), p.120 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac2fab |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Acceleration Angular distribution Angular drift Astrophysics Charged particles Differential equations Energetic particles Heliosphere Interplanetary magnetic field Interplanetary magnetic fields Interplanetary medium Interplanetary turbulence Magnetic fields Modelling Normal distribution Pitch (inclination) Solar energetic particles Solar magnetic field Solar rotation Solar wind Spirals Trigonometric functions Turbulence |
title | Transport of Solar Energetic Particles along Stochastic Parker Spirals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20Solar%20Energetic%20Particles%20along%20Stochastic%20Parker%20Spirals&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bian,%20N.%20H.&rft.date=2022-01-01&rft.volume=924&rft.issue=2&rft.spage=120&rft.pages=120-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac2fab&rft_dat=%3Cproquest_iop_j%3E2622624626%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622624626&rft_id=info:pmid/&rfr_iscdi=true |