Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations

We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-03, Vol.928 (1), p.55
Hauptverfasser: Psaltis, Dimitrios, Özel, Feryal, Medeiros, Lia, Christian, Pierre, Kim, Junhan, Chan, Chi-kwan, Conway, Landen J., Raithel, Carolyn A., Marrone, Dan, Lauer, Tod R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 55
container_title The Astrophysical journal
container_volume 928
creator Psaltis, Dimitrios
Özel, Feryal
Medeiros, Lia
Christian, Pierre
Kim, Junhan
Chan, Chi-kwan
Conway, Landen J.
Raithel, Carolyn A.
Marrone, Dan
Lauer, Tod R.
description We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.
doi_str_mv 10.3847/1538-4357/ac2c69
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac2c69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643275177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnL77GPDVbknTNs3jHJsbbAxkgm8lTW9cZm1qUgcT_O-21I8n4cK953DOuXAQuqZkxNKIj2nM0iBiMR9LFapEnKDBL3WKBoSQKEgYfzpHF97vOxgKMUCfa-le7AFPd9JUHmvr8MI682FbsJ48TBcjvGyngKox-miqZ3xnpAePTYXnpmk6ZrsD66AxSpZ4bQsoPW4snh1az08Y3kIJXtka8Cb34A6yMe2LS3SmZenh6nsP0eN8tp0ugtXmfjmdrAIVpqQJKBAhdFgQDQltz5xQKRMmUqV5EUlOJAhJcpCSURA8FWGqpI5UDJ1f52yIbvrc2tm3d_BNtrfvrmpfZmESsZDHlPNWRXqVctZ7BzqrnXmV7phRknUlZ12jWddo1pfcWm57i7H1X-a_8i-lZH7X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643275177</pqid></control><display><type>article</type><title>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Psaltis, Dimitrios ; Özel, Feryal ; Medeiros, Lia ; Christian, Pierre ; Kim, Junhan ; Chan, Chi-kwan ; Conway, Landen J. ; Raithel, Carolyn A. ; Marrone, Dan ; Lauer, Tod R.</creator><creatorcontrib>Psaltis, Dimitrios ; Özel, Feryal ; Medeiros, Lia ; Christian, Pierre ; Kim, Junhan ; Chan, Chi-kwan ; Conway, Landen J. ; Raithel, Carolyn A. ; Marrone, Dan ; Lauer, Tod R.</creatorcontrib><description>We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac2c69</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysical black holes ; Astrophysics ; Astrostatistics ; Black holes ; Data points ; Event horizon ; Fluid flow ; Interferometry ; Magnetohydrodynamics ; Markov chains ; Microprocessors ; Modelling ; Noise ; Parallel processing ; Supermassive black holes ; Very long baseline interferometry</subject><ispartof>The Astrophysical journal, 2022-03, Vol.928 (1), p.55</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</citedby><cites>FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</cites><orcidid>0000-0003-1035-3240 ; 0000-0001-6337-6126 ; 0000-0002-4274-9373 ; 0000-0003-4413-1523 ; 0000-0003-2342-6728 ; 0000-0002-2367-1080 ; 0000-0002-1798-6668 ; 0000-0001-6820-9941 ; 0000-0003-3234-7247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac2c69/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27903,27904,38869,53846</link.rule.ids></links><search><creatorcontrib>Psaltis, Dimitrios</creatorcontrib><creatorcontrib>Özel, Feryal</creatorcontrib><creatorcontrib>Medeiros, Lia</creatorcontrib><creatorcontrib>Christian, Pierre</creatorcontrib><creatorcontrib>Kim, Junhan</creatorcontrib><creatorcontrib>Chan, Chi-kwan</creatorcontrib><creatorcontrib>Conway, Landen J.</creatorcontrib><creatorcontrib>Raithel, Carolyn A.</creatorcontrib><creatorcontrib>Marrone, Dan</creatorcontrib><creatorcontrib>Lauer, Tod R.</creatorcontrib><title>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.</description><subject>Algorithms</subject><subject>Astrophysical black holes</subject><subject>Astrophysics</subject><subject>Astrostatistics</subject><subject>Black holes</subject><subject>Data points</subject><subject>Event horizon</subject><subject>Fluid flow</subject><subject>Interferometry</subject><subject>Magnetohydrodynamics</subject><subject>Markov chains</subject><subject>Microprocessors</subject><subject>Modelling</subject><subject>Noise</subject><subject>Parallel processing</subject><subject>Supermassive black holes</subject><subject>Very long baseline interferometry</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UF1LwzAUDaLgnL77GPDVbknTNs3jHJsbbAxkgm8lTW9cZm1qUgcT_O-21I8n4cK953DOuXAQuqZkxNKIj2nM0iBiMR9LFapEnKDBL3WKBoSQKEgYfzpHF97vOxgKMUCfa-le7AFPd9JUHmvr8MI682FbsJ48TBcjvGyngKox-miqZ3xnpAePTYXnpmk6ZrsD66AxSpZ4bQsoPW4snh1az08Y3kIJXtka8Cb34A6yMe2LS3SmZenh6nsP0eN8tp0ugtXmfjmdrAIVpqQJKBAhdFgQDQltz5xQKRMmUqV5EUlOJAhJcpCSURA8FWGqpI5UDJ1f52yIbvrc2tm3d_BNtrfvrmpfZmESsZDHlPNWRXqVctZ7BzqrnXmV7phRknUlZ12jWddo1pfcWm57i7H1X-a_8i-lZH7X</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Psaltis, Dimitrios</creator><creator>Özel, Feryal</creator><creator>Medeiros, Lia</creator><creator>Christian, Pierre</creator><creator>Kim, Junhan</creator><creator>Chan, Chi-kwan</creator><creator>Conway, Landen J.</creator><creator>Raithel, Carolyn A.</creator><creator>Marrone, Dan</creator><creator>Lauer, Tod R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1035-3240</orcidid><orcidid>https://orcid.org/0000-0001-6337-6126</orcidid><orcidid>https://orcid.org/0000-0002-4274-9373</orcidid><orcidid>https://orcid.org/0000-0003-4413-1523</orcidid><orcidid>https://orcid.org/0000-0003-2342-6728</orcidid><orcidid>https://orcid.org/0000-0002-2367-1080</orcidid><orcidid>https://orcid.org/0000-0002-1798-6668</orcidid><orcidid>https://orcid.org/0000-0001-6820-9941</orcidid><orcidid>https://orcid.org/0000-0003-3234-7247</orcidid></search><sort><creationdate>20220301</creationdate><title>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</title><author>Psaltis, Dimitrios ; Özel, Feryal ; Medeiros, Lia ; Christian, Pierre ; Kim, Junhan ; Chan, Chi-kwan ; Conway, Landen J. ; Raithel, Carolyn A. ; Marrone, Dan ; Lauer, Tod R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Astrophysical black holes</topic><topic>Astrophysics</topic><topic>Astrostatistics</topic><topic>Black holes</topic><topic>Data points</topic><topic>Event horizon</topic><topic>Fluid flow</topic><topic>Interferometry</topic><topic>Magnetohydrodynamics</topic><topic>Markov chains</topic><topic>Microprocessors</topic><topic>Modelling</topic><topic>Noise</topic><topic>Parallel processing</topic><topic>Supermassive black holes</topic><topic>Very long baseline interferometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Psaltis, Dimitrios</creatorcontrib><creatorcontrib>Özel, Feryal</creatorcontrib><creatorcontrib>Medeiros, Lia</creatorcontrib><creatorcontrib>Christian, Pierre</creatorcontrib><creatorcontrib>Kim, Junhan</creatorcontrib><creatorcontrib>Chan, Chi-kwan</creatorcontrib><creatorcontrib>Conway, Landen J.</creatorcontrib><creatorcontrib>Raithel, Carolyn A.</creatorcontrib><creatorcontrib>Marrone, Dan</creatorcontrib><creatorcontrib>Lauer, Tod R.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Psaltis, Dimitrios</au><au>Özel, Feryal</au><au>Medeiros, Lia</au><au>Christian, Pierre</au><au>Kim, Junhan</au><au>Chan, Chi-kwan</au><au>Conway, Landen J.</au><au>Raithel, Carolyn A.</au><au>Marrone, Dan</au><au>Lauer, Tod R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>928</volume><issue>1</issue><spage>55</spage><pages>55-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac2c69</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1035-3240</orcidid><orcidid>https://orcid.org/0000-0001-6337-6126</orcidid><orcidid>https://orcid.org/0000-0002-4274-9373</orcidid><orcidid>https://orcid.org/0000-0003-4413-1523</orcidid><orcidid>https://orcid.org/0000-0003-2342-6728</orcidid><orcidid>https://orcid.org/0000-0002-2367-1080</orcidid><orcidid>https://orcid.org/0000-0002-1798-6668</orcidid><orcidid>https://orcid.org/0000-0001-6820-9941</orcidid><orcidid>https://orcid.org/0000-0003-3234-7247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-03, Vol.928 (1), p.55
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ac2c69
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Astrophysical black holes
Astrophysics
Astrostatistics
Black holes
Data points
Event horizon
Fluid flow
Interferometry
Magnetohydrodynamics
Markov chains
Microprocessors
Modelling
Noise
Parallel processing
Supermassive black holes
Very long baseline interferometry
title Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20Chains%20for%20Horizons%20MARCH.%20I.%20Identifying%20Biases%20in%20Fitting%20Theoretical%20Models%20to%20Event%20Horizon%20Telescope%20Observations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Psaltis,%20Dimitrios&rft.date=2022-03-01&rft.volume=928&rft.issue=1&rft.spage=55&rft.pages=55-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac2c69&rft_dat=%3Cproquest_iop_j%3E2643275177%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643275177&rft_id=info:pmid/&rfr_iscdi=true