Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations
We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-03, Vol.928 (1), p.55 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | The Astrophysical journal |
container_volume | 928 |
creator | Psaltis, Dimitrios Özel, Feryal Medeiros, Lia Christian, Pierre Kim, Junhan Chan, Chi-kwan Conway, Landen J. Raithel, Carolyn A. Marrone, Dan Lauer, Tod R. |
description | We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications. |
doi_str_mv | 10.3847/1538-4357/ac2c69 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac2c69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643275177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnL77GPDVbknTNs3jHJsbbAxkgm8lTW9cZm1qUgcT_O-21I8n4cK953DOuXAQuqZkxNKIj2nM0iBiMR9LFapEnKDBL3WKBoSQKEgYfzpHF97vOxgKMUCfa-le7AFPd9JUHmvr8MI682FbsJ48TBcjvGyngKox-miqZ3xnpAePTYXnpmk6ZrsD66AxSpZ4bQsoPW4snh1az08Y3kIJXtka8Cb34A6yMe2LS3SmZenh6nsP0eN8tp0ugtXmfjmdrAIVpqQJKBAhdFgQDQltz5xQKRMmUqV5EUlOJAhJcpCSURA8FWGqpI5UDJ1f52yIbvrc2tm3d_BNtrfvrmpfZmESsZDHlPNWRXqVctZ7BzqrnXmV7phRknUlZ12jWddo1pfcWm57i7H1X-a_8i-lZH7X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643275177</pqid></control><display><type>article</type><title>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Psaltis, Dimitrios ; Özel, Feryal ; Medeiros, Lia ; Christian, Pierre ; Kim, Junhan ; Chan, Chi-kwan ; Conway, Landen J. ; Raithel, Carolyn A. ; Marrone, Dan ; Lauer, Tod R.</creator><creatorcontrib>Psaltis, Dimitrios ; Özel, Feryal ; Medeiros, Lia ; Christian, Pierre ; Kim, Junhan ; Chan, Chi-kwan ; Conway, Landen J. ; Raithel, Carolyn A. ; Marrone, Dan ; Lauer, Tod R.</creatorcontrib><description>We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac2c69</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysical black holes ; Astrophysics ; Astrostatistics ; Black holes ; Data points ; Event horizon ; Fluid flow ; Interferometry ; Magnetohydrodynamics ; Markov chains ; Microprocessors ; Modelling ; Noise ; Parallel processing ; Supermassive black holes ; Very long baseline interferometry</subject><ispartof>The Astrophysical journal, 2022-03, Vol.928 (1), p.55</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</citedby><cites>FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</cites><orcidid>0000-0003-1035-3240 ; 0000-0001-6337-6126 ; 0000-0002-4274-9373 ; 0000-0003-4413-1523 ; 0000-0003-2342-6728 ; 0000-0002-2367-1080 ; 0000-0002-1798-6668 ; 0000-0001-6820-9941 ; 0000-0003-3234-7247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac2c69/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27903,27904,38869,53846</link.rule.ids></links><search><creatorcontrib>Psaltis, Dimitrios</creatorcontrib><creatorcontrib>Özel, Feryal</creatorcontrib><creatorcontrib>Medeiros, Lia</creatorcontrib><creatorcontrib>Christian, Pierre</creatorcontrib><creatorcontrib>Kim, Junhan</creatorcontrib><creatorcontrib>Chan, Chi-kwan</creatorcontrib><creatorcontrib>Conway, Landen J.</creatorcontrib><creatorcontrib>Raithel, Carolyn A.</creatorcontrib><creatorcontrib>Marrone, Dan</creatorcontrib><creatorcontrib>Lauer, Tod R.</creatorcontrib><title>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.</description><subject>Algorithms</subject><subject>Astrophysical black holes</subject><subject>Astrophysics</subject><subject>Astrostatistics</subject><subject>Black holes</subject><subject>Data points</subject><subject>Event horizon</subject><subject>Fluid flow</subject><subject>Interferometry</subject><subject>Magnetohydrodynamics</subject><subject>Markov chains</subject><subject>Microprocessors</subject><subject>Modelling</subject><subject>Noise</subject><subject>Parallel processing</subject><subject>Supermassive black holes</subject><subject>Very long baseline interferometry</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UF1LwzAUDaLgnL77GPDVbknTNs3jHJsbbAxkgm8lTW9cZm1qUgcT_O-21I8n4cK953DOuXAQuqZkxNKIj2nM0iBiMR9LFapEnKDBL3WKBoSQKEgYfzpHF97vOxgKMUCfa-le7AFPd9JUHmvr8MI682FbsJ48TBcjvGyngKox-miqZ3xnpAePTYXnpmk6ZrsD66AxSpZ4bQsoPW4snh1az08Y3kIJXtka8Cb34A6yMe2LS3SmZenh6nsP0eN8tp0ugtXmfjmdrAIVpqQJKBAhdFgQDQltz5xQKRMmUqV5EUlOJAhJcpCSURA8FWGqpI5UDJ1f52yIbvrc2tm3d_BNtrfvrmpfZmESsZDHlPNWRXqVctZ7BzqrnXmV7phRknUlZ12jWddo1pfcWm57i7H1X-a_8i-lZH7X</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Psaltis, Dimitrios</creator><creator>Özel, Feryal</creator><creator>Medeiros, Lia</creator><creator>Christian, Pierre</creator><creator>Kim, Junhan</creator><creator>Chan, Chi-kwan</creator><creator>Conway, Landen J.</creator><creator>Raithel, Carolyn A.</creator><creator>Marrone, Dan</creator><creator>Lauer, Tod R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1035-3240</orcidid><orcidid>https://orcid.org/0000-0001-6337-6126</orcidid><orcidid>https://orcid.org/0000-0002-4274-9373</orcidid><orcidid>https://orcid.org/0000-0003-4413-1523</orcidid><orcidid>https://orcid.org/0000-0003-2342-6728</orcidid><orcidid>https://orcid.org/0000-0002-2367-1080</orcidid><orcidid>https://orcid.org/0000-0002-1798-6668</orcidid><orcidid>https://orcid.org/0000-0001-6820-9941</orcidid><orcidid>https://orcid.org/0000-0003-3234-7247</orcidid></search><sort><creationdate>20220301</creationdate><title>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</title><author>Psaltis, Dimitrios ; Özel, Feryal ; Medeiros, Lia ; Christian, Pierre ; Kim, Junhan ; Chan, Chi-kwan ; Conway, Landen J. ; Raithel, Carolyn A. ; Marrone, Dan ; Lauer, Tod R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1e099f2d0fe61099b01aa6398cf7d4a70ae9a0beaa31e978928caf4c5ec280fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Astrophysical black holes</topic><topic>Astrophysics</topic><topic>Astrostatistics</topic><topic>Black holes</topic><topic>Data points</topic><topic>Event horizon</topic><topic>Fluid flow</topic><topic>Interferometry</topic><topic>Magnetohydrodynamics</topic><topic>Markov chains</topic><topic>Microprocessors</topic><topic>Modelling</topic><topic>Noise</topic><topic>Parallel processing</topic><topic>Supermassive black holes</topic><topic>Very long baseline interferometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Psaltis, Dimitrios</creatorcontrib><creatorcontrib>Özel, Feryal</creatorcontrib><creatorcontrib>Medeiros, Lia</creatorcontrib><creatorcontrib>Christian, Pierre</creatorcontrib><creatorcontrib>Kim, Junhan</creatorcontrib><creatorcontrib>Chan, Chi-kwan</creatorcontrib><creatorcontrib>Conway, Landen J.</creatorcontrib><creatorcontrib>Raithel, Carolyn A.</creatorcontrib><creatorcontrib>Marrone, Dan</creatorcontrib><creatorcontrib>Lauer, Tod R.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Psaltis, Dimitrios</au><au>Özel, Feryal</au><au>Medeiros, Lia</au><au>Christian, Pierre</au><au>Kim, Junhan</au><au>Chan, Chi-kwan</au><au>Conway, Landen J.</au><au>Raithel, Carolyn A.</au><au>Marrone, Dan</au><au>Lauer, Tod R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>928</volume><issue>1</issue><spage>55</spage><pages>55-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac2c69</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1035-3240</orcidid><orcidid>https://orcid.org/0000-0001-6337-6126</orcidid><orcidid>https://orcid.org/0000-0002-4274-9373</orcidid><orcidid>https://orcid.org/0000-0003-4413-1523</orcidid><orcidid>https://orcid.org/0000-0003-2342-6728</orcidid><orcidid>https://orcid.org/0000-0002-2367-1080</orcidid><orcidid>https://orcid.org/0000-0002-1798-6668</orcidid><orcidid>https://orcid.org/0000-0001-6820-9941</orcidid><orcidid>https://orcid.org/0000-0003-3234-7247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-03, Vol.928 (1), p.55 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac2c69 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Astrophysical black holes Astrophysics Astrostatistics Black holes Data points Event horizon Fluid flow Interferometry Magnetohydrodynamics Markov chains Microprocessors Modelling Noise Parallel processing Supermassive black holes Very long baseline interferometry |
title | Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20Chains%20for%20Horizons%20MARCH.%20I.%20Identifying%20Biases%20in%20Fitting%20Theoretical%20Models%20to%20Event%20Horizon%20Telescope%20Observations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Psaltis,%20Dimitrios&rft.date=2022-03-01&rft.volume=928&rft.issue=1&rft.spage=55&rft.pages=55-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac2c69&rft_dat=%3Cproquest_iop_j%3E2643275177%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643275177&rft_id=info:pmid/&rfr_iscdi=true |