Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg

We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-10, Vol.919 (2), p.127
Hauptverfasser: Cendes, Y., Alexander, K. D., Berger, E., Eftekhari, T., Williams, P. K. G., Chornock, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 127
container_title The Astrophysical journal
container_volume 919
creator Cendes, Y.
Alexander, K. D.
Berger, E.
Eftekhari, T.
Williams, P. K. G.
Chornock, R.
description We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07 c , while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10 48 erg thereafter. The ambient density traced by the outflow declines as radius ≈ R −1.7 on a scale of ≈(1–4) × 10 16 cm (≈6300–25,000 R s ), followed by a steeper decline to ≈7 × 10 16 cm (≈44,000 R s ). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of θ j ≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.
doi_str_mv 10.3847/1538-4357/ac110a
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac110a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579135176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoOKd3jwHxZl2-mjTHMecHDAo6wVtIm1QztqYm7cT_3paKXvQU3vD8fi_vA8A5Rtc0Y2KGU5oljKZipkuMkT4Ak5-vQzBBCLGEU_FyDE5i3AwjkXICnh61cR7mRbRhr1vn6wh9BXUN82BcrcMnzLu22voPWAW_g-2bhWtn9BbeuBi6ZkjA5d7WLZyvCcLSxNdTcFTpbbRn3-8UPN8u14v7ZJXfPSzmq6RkjLdJZaQUjBrGOUtTgi3LMC6MKYiQheSUSJLqTPCMDAzOCiYkM2VmEEdUGkmn4GLsbYJ_72xs1cZ3oe5XKpIKiWmKBe8pNFJl8DEGW6kmuF1_mMJIDerU4EkNntSoro9cjhHnm99O3WyUxFIRhYlQjal67uoP7t_aL_P5edY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579135176</pqid></control><display><type>article</type><title>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</title><source>IOP_英国物理学会OA刊</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Cendes, Y. ; Alexander, K. D. ; Berger, E. ; Eftekhari, T. ; Williams, P. K. G. ; Chornock, R.</creator><creatorcontrib>Cendes, Y. ; Alexander, K. D. ; Berger, E. ; Eftekhari, T. ; Williams, P. K. G. ; Chornock, R.</creatorcontrib><description>We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07 c , while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10 48 erg thereafter. The ambient density traced by the outflow declines as radius ≈ R −1.7 on a scale of ≈(1–4) × 10 16 cm (≈6300–25,000 R s ), followed by a steeper decline to ≈7 × 10 16 cm (≈44,000 R s ). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of θ j ≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac110a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Arrays ; Astrophysical black holes ; Astrophysics ; Black hole physics ; Disruption ; Gamma ray bursts ; Gamma rays ; High energy astronomy ; Kinetic energy ; Neutrinos ; Outflow ; Plateaus ; Radio astronomy ; Radio emission ; Radio observation ; Radio telescopes ; Relativistic effects ; Relativistic velocity ; Supernovae ; Synchrotrons ; Tidal disruption</subject><ispartof>The Astrophysical journal, 2021-10, Vol.919 (2), p.127</ispartof><rights>2021. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Oct 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</citedby><cites>FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</cites><orcidid>0000-0002-9392-9681 ; 0000-0003-3734-3587 ; 0000-0002-8297-2473 ; 0000-0001-7007-6295 ; 0000-0003-0307-9984 ; 0000-0002-7706-5668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac110a/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Cendes, Y.</creatorcontrib><creatorcontrib>Alexander, K. D.</creatorcontrib><creatorcontrib>Berger, E.</creatorcontrib><creatorcontrib>Eftekhari, T.</creatorcontrib><creatorcontrib>Williams, P. K. G.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><title>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07 c , while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10 48 erg thereafter. The ambient density traced by the outflow declines as radius ≈ R −1.7 on a scale of ≈(1–4) × 10 16 cm (≈6300–25,000 R s ), followed by a steeper decline to ≈7 × 10 16 cm (≈44,000 R s ). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of θ j ≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.</description><subject>Arrays</subject><subject>Astrophysical black holes</subject><subject>Astrophysics</subject><subject>Black hole physics</subject><subject>Disruption</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>High energy astronomy</subject><subject>Kinetic energy</subject><subject>Neutrinos</subject><subject>Outflow</subject><subject>Plateaus</subject><subject>Radio astronomy</subject><subject>Radio emission</subject><subject>Radio observation</subject><subject>Radio telescopes</subject><subject>Relativistic effects</subject><subject>Relativistic velocity</subject><subject>Supernovae</subject><subject>Synchrotrons</subject><subject>Tidal disruption</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LwzAYh4MoOKd3jwHxZl2-mjTHMecHDAo6wVtIm1QztqYm7cT_3paKXvQU3vD8fi_vA8A5Rtc0Y2KGU5oljKZipkuMkT4Ak5-vQzBBCLGEU_FyDE5i3AwjkXICnh61cR7mRbRhr1vn6wh9BXUN82BcrcMnzLu22voPWAW_g-2bhWtn9BbeuBi6ZkjA5d7WLZyvCcLSxNdTcFTpbbRn3-8UPN8u14v7ZJXfPSzmq6RkjLdJZaQUjBrGOUtTgi3LMC6MKYiQheSUSJLqTPCMDAzOCiYkM2VmEEdUGkmn4GLsbYJ_72xs1cZ3oe5XKpIKiWmKBe8pNFJl8DEGW6kmuF1_mMJIDerU4EkNntSoro9cjhHnm99O3WyUxFIRhYlQjal67uoP7t_aL_P5edY</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Cendes, Y.</creator><creator>Alexander, K. D.</creator><creator>Berger, E.</creator><creator>Eftekhari, T.</creator><creator>Williams, P. K. G.</creator><creator>Chornock, R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9392-9681</orcidid><orcidid>https://orcid.org/0000-0003-3734-3587</orcidid><orcidid>https://orcid.org/0000-0002-8297-2473</orcidid><orcidid>https://orcid.org/0000-0001-7007-6295</orcidid><orcidid>https://orcid.org/0000-0003-0307-9984</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid></search><sort><creationdate>20211001</creationdate><title>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</title><author>Cendes, Y. ; Alexander, K. D. ; Berger, E. ; Eftekhari, T. ; Williams, P. K. G. ; Chornock, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Astrophysical black holes</topic><topic>Astrophysics</topic><topic>Black hole physics</topic><topic>Disruption</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>High energy astronomy</topic><topic>Kinetic energy</topic><topic>Neutrinos</topic><topic>Outflow</topic><topic>Plateaus</topic><topic>Radio astronomy</topic><topic>Radio emission</topic><topic>Radio observation</topic><topic>Radio telescopes</topic><topic>Relativistic effects</topic><topic>Relativistic velocity</topic><topic>Supernovae</topic><topic>Synchrotrons</topic><topic>Tidal disruption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cendes, Y.</creatorcontrib><creatorcontrib>Alexander, K. D.</creatorcontrib><creatorcontrib>Berger, E.</creatorcontrib><creatorcontrib>Eftekhari, T.</creatorcontrib><creatorcontrib>Williams, P. K. G.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cendes, Y.</au><au>Alexander, K. D.</au><au>Berger, E.</au><au>Eftekhari, T.</au><au>Williams, P. K. G.</au><au>Chornock, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>919</volume><issue>2</issue><spage>127</spage><pages>127-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07 c , while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10 48 erg thereafter. The ambient density traced by the outflow declines as radius ≈ R −1.7 on a scale of ≈(1–4) × 10 16 cm (≈6300–25,000 R s ), followed by a steeper decline to ≈7 × 10 16 cm (≈44,000 R s ). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of θ j ≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac110a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9392-9681</orcidid><orcidid>https://orcid.org/0000-0003-3734-3587</orcidid><orcidid>https://orcid.org/0000-0002-8297-2473</orcidid><orcidid>https://orcid.org/0000-0001-7007-6295</orcidid><orcidid>https://orcid.org/0000-0003-0307-9984</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-10, Vol.919 (2), p.127
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_ac110a
source IOP_英国物理学会OA刊; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Arrays
Astrophysical black holes
Astrophysics
Black hole physics
Disruption
Gamma ray bursts
Gamma rays
High energy astronomy
Kinetic energy
Neutrinos
Outflow
Plateaus
Radio astronomy
Radio emission
Radio observation
Radio telescopes
Relativistic effects
Relativistic velocity
Supernovae
Synchrotrons
Tidal disruption
title Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radio%20Observations%20of%20an%20Ordinary%20Outflow%20from%20the%20Tidal%20Disruption%20Event%20AT2019dsg&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cendes,%20Y.&rft.date=2021-10-01&rft.volume=919&rft.issue=2&rft.spage=127&rft.pages=127-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac110a&rft_dat=%3Cproquest_iop_j%3E2579135176%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579135176&rft_id=info:pmid/&rfr_iscdi=true