Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg
We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-10, Vol.919 (2), p.127 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 127 |
container_title | The Astrophysical journal |
container_volume | 919 |
creator | Cendes, Y. Alexander, K. D. Berger, E. Eftekhari, T. Williams, P. K. G. Chornock, R. |
description | We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07
c
, while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10
48
erg thereafter. The ambient density traced by the outflow declines as radius ≈
R
−1.7
on a scale of ≈(1–4) × 10
16
cm (≈6300–25,000
R
s
), followed by a steeper decline to ≈7 × 10
16
cm (≈44,000
R
s
). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of
θ
j
≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event. |
doi_str_mv | 10.3847/1538-4357/ac110a |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ac110a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579135176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoOKd3jwHxZl2-mjTHMecHDAo6wVtIm1QztqYm7cT_3paKXvQU3vD8fi_vA8A5Rtc0Y2KGU5oljKZipkuMkT4Ak5-vQzBBCLGEU_FyDE5i3AwjkXICnh61cR7mRbRhr1vn6wh9BXUN82BcrcMnzLu22voPWAW_g-2bhWtn9BbeuBi6ZkjA5d7WLZyvCcLSxNdTcFTpbbRn3-8UPN8u14v7ZJXfPSzmq6RkjLdJZaQUjBrGOUtTgi3LMC6MKYiQheSUSJLqTPCMDAzOCiYkM2VmEEdUGkmn4GLsbYJ_72xs1cZ3oe5XKpIKiWmKBe8pNFJl8DEGW6kmuF1_mMJIDerU4EkNntSoro9cjhHnm99O3WyUxFIRhYlQjal67uoP7t_aL_P5edY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579135176</pqid></control><display><type>article</type><title>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</title><source>IOP_英国物理学会OA刊</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Cendes, Y. ; Alexander, K. D. ; Berger, E. ; Eftekhari, T. ; Williams, P. K. G. ; Chornock, R.</creator><creatorcontrib>Cendes, Y. ; Alexander, K. D. ; Berger, E. ; Eftekhari, T. ; Williams, P. K. G. ; Chornock, R.</creatorcontrib><description>We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07
c
, while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10
48
erg thereafter. The ambient density traced by the outflow declines as radius ≈
R
−1.7
on a scale of ≈(1–4) × 10
16
cm (≈6300–25,000
R
s
), followed by a steeper decline to ≈7 × 10
16
cm (≈44,000
R
s
). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of
θ
j
≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac110a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Arrays ; Astrophysical black holes ; Astrophysics ; Black hole physics ; Disruption ; Gamma ray bursts ; Gamma rays ; High energy astronomy ; Kinetic energy ; Neutrinos ; Outflow ; Plateaus ; Radio astronomy ; Radio emission ; Radio observation ; Radio telescopes ; Relativistic effects ; Relativistic velocity ; Supernovae ; Synchrotrons ; Tidal disruption</subject><ispartof>The Astrophysical journal, 2021-10, Vol.919 (2), p.127</ispartof><rights>2021. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Oct 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</citedby><cites>FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</cites><orcidid>0000-0002-9392-9681 ; 0000-0003-3734-3587 ; 0000-0002-8297-2473 ; 0000-0001-7007-6295 ; 0000-0003-0307-9984 ; 0000-0002-7706-5668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac110a/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Cendes, Y.</creatorcontrib><creatorcontrib>Alexander, K. D.</creatorcontrib><creatorcontrib>Berger, E.</creatorcontrib><creatorcontrib>Eftekhari, T.</creatorcontrib><creatorcontrib>Williams, P. K. G.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><title>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07
c
, while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10
48
erg thereafter. The ambient density traced by the outflow declines as radius ≈
R
−1.7
on a scale of ≈(1–4) × 10
16
cm (≈6300–25,000
R
s
), followed by a steeper decline to ≈7 × 10
16
cm (≈44,000
R
s
). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of
θ
j
≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.</description><subject>Arrays</subject><subject>Astrophysical black holes</subject><subject>Astrophysics</subject><subject>Black hole physics</subject><subject>Disruption</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>High energy astronomy</subject><subject>Kinetic energy</subject><subject>Neutrinos</subject><subject>Outflow</subject><subject>Plateaus</subject><subject>Radio astronomy</subject><subject>Radio emission</subject><subject>Radio observation</subject><subject>Radio telescopes</subject><subject>Relativistic effects</subject><subject>Relativistic velocity</subject><subject>Supernovae</subject><subject>Synchrotrons</subject><subject>Tidal disruption</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LwzAYh4MoOKd3jwHxZl2-mjTHMecHDAo6wVtIm1QztqYm7cT_3paKXvQU3vD8fi_vA8A5Rtc0Y2KGU5oljKZipkuMkT4Ak5-vQzBBCLGEU_FyDE5i3AwjkXICnh61cR7mRbRhr1vn6wh9BXUN82BcrcMnzLu22voPWAW_g-2bhWtn9BbeuBi6ZkjA5d7WLZyvCcLSxNdTcFTpbbRn3-8UPN8u14v7ZJXfPSzmq6RkjLdJZaQUjBrGOUtTgi3LMC6MKYiQheSUSJLqTPCMDAzOCiYkM2VmEEdUGkmn4GLsbYJ_72xs1cZ3oe5XKpIKiWmKBe8pNFJl8DEGW6kmuF1_mMJIDerU4EkNntSoro9cjhHnm99O3WyUxFIRhYlQjal67uoP7t_aL_P5edY</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Cendes, Y.</creator><creator>Alexander, K. D.</creator><creator>Berger, E.</creator><creator>Eftekhari, T.</creator><creator>Williams, P. K. G.</creator><creator>Chornock, R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9392-9681</orcidid><orcidid>https://orcid.org/0000-0003-3734-3587</orcidid><orcidid>https://orcid.org/0000-0002-8297-2473</orcidid><orcidid>https://orcid.org/0000-0001-7007-6295</orcidid><orcidid>https://orcid.org/0000-0003-0307-9984</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid></search><sort><creationdate>20211001</creationdate><title>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</title><author>Cendes, Y. ; Alexander, K. D. ; Berger, E. ; Eftekhari, T. ; Williams, P. K. G. ; Chornock, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-fd99743d46645521e4811bddb279b9632925a876823d4618b4794dc8d06039d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Astrophysical black holes</topic><topic>Astrophysics</topic><topic>Black hole physics</topic><topic>Disruption</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>High energy astronomy</topic><topic>Kinetic energy</topic><topic>Neutrinos</topic><topic>Outflow</topic><topic>Plateaus</topic><topic>Radio astronomy</topic><topic>Radio emission</topic><topic>Radio observation</topic><topic>Radio telescopes</topic><topic>Relativistic effects</topic><topic>Relativistic velocity</topic><topic>Supernovae</topic><topic>Synchrotrons</topic><topic>Tidal disruption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cendes, Y.</creatorcontrib><creatorcontrib>Alexander, K. D.</creatorcontrib><creatorcontrib>Berger, E.</creatorcontrib><creatorcontrib>Eftekhari, T.</creatorcontrib><creatorcontrib>Williams, P. K. G.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cendes, Y.</au><au>Alexander, K. D.</au><au>Berger, E.</au><au>Eftekhari, T.</au><au>Williams, P. K. G.</au><au>Chornock, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>919</volume><issue>2</issue><spage>127</spage><pages>127-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present detailed radio observations of the tidal disruption event (TDE) AT2019dsg, obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and spanning 55–560 days post disruption. We find that the peak brightness of the radio emission increases until ∼200 days and subsequently begins to decrease steadily. Using a standard equipartition analysis, including the effects of synchrotron cooling as determined by the joint VLA–ALMA spectral energy distributions, we find that the outflow powering the radio emission is in roughly free expansion with a velocity of ≈0.07
c
, while its kinetic energy increases by a factor of about 5 from 55 to 200 days and plateaus at ≈4.4 × 10
48
erg thereafter. The ambient density traced by the outflow declines as radius ≈
R
−1.7
on a scale of ≈(1–4) × 10
16
cm (≈6300–25,000
R
s
), followed by a steeper decline to ≈7 × 10
16
cm (≈44,000
R
s
). Allowing for a collimated geometry, we find that to reach even mildly relativistic velocities (Γ = 2) the outflow requires an opening angle of
θ
j
≈ 2°, which is narrow even by the standards of gamma-ray burst jets; a truly relativistic outflow requires an unphysically narrow jet. The outflow velocity and kinetic energy in AT2019dsg are typical of previous non-relativistic TDEs, and comparable to those from type Ib/c supernovae, raising doubts about the claimed association with a high-energy neutrino event.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac110a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9392-9681</orcidid><orcidid>https://orcid.org/0000-0003-3734-3587</orcidid><orcidid>https://orcid.org/0000-0002-8297-2473</orcidid><orcidid>https://orcid.org/0000-0001-7007-6295</orcidid><orcidid>https://orcid.org/0000-0003-0307-9984</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-10, Vol.919 (2), p.127 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ac110a |
source | IOP_英国物理学会OA刊; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Arrays Astrophysical black holes Astrophysics Black hole physics Disruption Gamma ray bursts Gamma rays High energy astronomy Kinetic energy Neutrinos Outflow Plateaus Radio astronomy Radio emission Radio observation Radio telescopes Relativistic effects Relativistic velocity Supernovae Synchrotrons Tidal disruption |
title | Radio Observations of an Ordinary Outflow from the Tidal Disruption Event AT2019dsg |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radio%20Observations%20of%20an%20Ordinary%20Outflow%20from%20the%20Tidal%20Disruption%20Event%20AT2019dsg&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cendes,%20Y.&rft.date=2021-10-01&rft.volume=919&rft.issue=2&rft.spage=127&rft.pages=127-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac110a&rft_dat=%3Cproquest_iop_j%3E2579135176%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579135176&rft_id=info:pmid/&rfr_iscdi=true |