The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion
Mass-independent isotopic anomalies of carbonaceous and noncarbonaceous meteorites show a clear dichotomy suggesting an efficient separation of the inner and outer solar system. Observations show that ring-like structures in the distribution of millimeter-sized pebbles in protoplanetary disks are co...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-07, Vol.915 (1), p.62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | The Astrophysical journal |
container_volume | 915 |
creator | Izidoro, André Bitsch, Bertram Dasgupta, Rajdeep |
description | Mass-independent isotopic anomalies of carbonaceous and noncarbonaceous meteorites show a clear dichotomy suggesting an efficient separation of the inner and outer solar system. Observations show that ring-like structures in the distribution of millimeter-sized pebbles in protoplanetary disks are common. These structures are often associated with drifting pebbles being trapped by local pressure maxima in the gas disk. Similar structures may also have existed in the Sun’s natal disk, which could naturally explain the meteorite/planetary isotopic dichotomy. Here, we test the effects of a strong pressure bump in the outer disk (e.g., ∼5 au) on the formation of the inner solar system. We model dust coagulation and evolution, planetesimal formation, as well as embryo growth via planetesimal and pebble accretion. Our results show that terrestrial embryos formed via planetesimal accretion rather than pebble accretion. In our model, the radial drift of pebbles fosters planetesimal formation. However, once a pressure bump forms, pebbles in the inner disk are lost via drift before they can be efficiently accreted by embryos growing at ⪆1 au. Embryos inside ∼0.5–1.0 au grow relatively faster and can accrete pebbles more efficiently. However, these same embryos grow to larger masses so they should migrate inwards substantially, which is inconsistent with the current solar system. Therefore, terrestrial planets most likely accreted from giant impacts of Moon to roughly Mars-mass planetary embryos formed around ⪆1.0 au. Finally, our simulations produce a steep radial mass distribution of planetesimals in the terrestrial region, which is qualitatively aligned with formation models suggesting that the asteroid belt was born low mass. |
doi_str_mv | 10.3847/1538-4357/abfe0b |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abfe0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548660178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-4bdfd20ec6ec750627d5c75e263b19e6a0fba8e02c6e7c804fb1639c24db029a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuWxZ2kJloQ6duIk7EopDwlBBUViZ9nOGFLaJNgJEjs-gg2_x5fg0IpuEKvx3DlzrbkI7YXkiKVR0g9jlgYRi5O-VAaIWkO9X2kd9QghUcBZ8rCJtpybdi3Nsh76mDwBHhkDusGVwRLfNbYqH_HYgnOtBXzSzmtclLjx3F1bfr1_OnwtGznDp4V7PsYTsB5tbOGV8UyW0OCzys5lU1Qlfi3kUgRXzD0x0NrCz-hWekfrbWWJx6DUDFbDHbRh5MzB7rJuo_uz0WR4EVzdnF8OB1eBZknWBJHKTU4JaA46iQmnSR77B1DOVJgBl8QomQKhHkh0SiKjQs4yTaNcEZpJto32F761rV5af4WYVq0t_ZeCxlHKOQmT1FNkQWlbOWfBiNr6Y-ybCInoshdd0KILWiyy9yuHi5Wiqlee_-AHf-CynoosjEUoOBV1btg3ycuViw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548660178</pqid></control><display><type>article</type><title>The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion</title><source>IOP Publishing Free Content</source><creator>Izidoro, André ; Bitsch, Bertram ; Dasgupta, Rajdeep</creator><creatorcontrib>Izidoro, André ; Bitsch, Bertram ; Dasgupta, Rajdeep</creatorcontrib><description>Mass-independent isotopic anomalies of carbonaceous and noncarbonaceous meteorites show a clear dichotomy suggesting an efficient separation of the inner and outer solar system. Observations show that ring-like structures in the distribution of millimeter-sized pebbles in protoplanetary disks are common. These structures are often associated with drifting pebbles being trapped by local pressure maxima in the gas disk. Similar structures may also have existed in the Sun’s natal disk, which could naturally explain the meteorite/planetary isotopic dichotomy. Here, we test the effects of a strong pressure bump in the outer disk (e.g., ∼5 au) on the formation of the inner solar system. We model dust coagulation and evolution, planetesimal formation, as well as embryo growth via planetesimal and pebble accretion. Our results show that terrestrial embryos formed via planetesimal accretion rather than pebble accretion. In our model, the radial drift of pebbles fosters planetesimal formation. However, once a pressure bump forms, pebbles in the inner disk are lost via drift before they can be efficiently accreted by embryos growing at ⪆1 au. Embryos inside ∼0.5–1.0 au grow relatively faster and can accrete pebbles more efficiently. However, these same embryos grow to larger masses so they should migrate inwards substantially, which is inconsistent with the current solar system. Therefore, terrestrial planets most likely accreted from giant impacts of Moon to roughly Mars-mass planetary embryos formed around ⪆1.0 au. Finally, our simulations produce a steep radial mass distribution of planetesimals in the terrestrial region, which is qualitatively aligned with formation models suggesting that the asteroid belt was born low mass.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abfe0b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Anomalies ; Asteroids ; Astrophysics ; Coagulation ; Deposition ; Drift ; Embryos ; Inner solar system ; Mass distribution ; Meteorites ; Meteors & meteorites ; Outer solar system ; Planet formation ; Planetesimals ; Planets ; Pressure effects ; Protoplanetary disks ; Radial drift ; Solar system ; Solar system evolution ; Solar system terrestrial planets ; Terrestrial environments ; Terrestrial planets</subject><ispartof>The Astrophysical journal, 2021-07, Vol.915 (1), p.62</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-4bdfd20ec6ec750627d5c75e263b19e6a0fba8e02c6e7c804fb1639c24db029a3</citedby><cites>FETCH-LOGICAL-c379t-4bdfd20ec6ec750627d5c75e263b19e6a0fba8e02c6e7c804fb1639c24db029a3</cites><orcidid>0000-0002-8868-7649 ; 0000-0003-1878-0634 ; 0000-0001-5392-415X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abfe0b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abfe0b$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Izidoro, André</creatorcontrib><creatorcontrib>Bitsch, Bertram</creatorcontrib><creatorcontrib>Dasgupta, Rajdeep</creatorcontrib><title>The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Mass-independent isotopic anomalies of carbonaceous and noncarbonaceous meteorites show a clear dichotomy suggesting an efficient separation of the inner and outer solar system. Observations show that ring-like structures in the distribution of millimeter-sized pebbles in protoplanetary disks are common. These structures are often associated with drifting pebbles being trapped by local pressure maxima in the gas disk. Similar structures may also have existed in the Sun’s natal disk, which could naturally explain the meteorite/planetary isotopic dichotomy. Here, we test the effects of a strong pressure bump in the outer disk (e.g., ∼5 au) on the formation of the inner solar system. We model dust coagulation and evolution, planetesimal formation, as well as embryo growth via planetesimal and pebble accretion. Our results show that terrestrial embryos formed via planetesimal accretion rather than pebble accretion. In our model, the radial drift of pebbles fosters planetesimal formation. However, once a pressure bump forms, pebbles in the inner disk are lost via drift before they can be efficiently accreted by embryos growing at ⪆1 au. Embryos inside ∼0.5–1.0 au grow relatively faster and can accrete pebbles more efficiently. However, these same embryos grow to larger masses so they should migrate inwards substantially, which is inconsistent with the current solar system. Therefore, terrestrial planets most likely accreted from giant impacts of Moon to roughly Mars-mass planetary embryos formed around ⪆1.0 au. Finally, our simulations produce a steep radial mass distribution of planetesimals in the terrestrial region, which is qualitatively aligned with formation models suggesting that the asteroid belt was born low mass.</description><subject>Accretion disks</subject><subject>Anomalies</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Coagulation</subject><subject>Deposition</subject><subject>Drift</subject><subject>Embryos</subject><subject>Inner solar system</subject><subject>Mass distribution</subject><subject>Meteorites</subject><subject>Meteors & meteorites</subject><subject>Outer solar system</subject><subject>Planet formation</subject><subject>Planetesimals</subject><subject>Planets</subject><subject>Pressure effects</subject><subject>Protoplanetary disks</subject><subject>Radial drift</subject><subject>Solar system</subject><subject>Solar system evolution</subject><subject>Solar system terrestrial planets</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuWxZ2kJloQ6duIk7EopDwlBBUViZ9nOGFLaJNgJEjs-gg2_x5fg0IpuEKvx3DlzrbkI7YXkiKVR0g9jlgYRi5O-VAaIWkO9X2kd9QghUcBZ8rCJtpybdi3Nsh76mDwBHhkDusGVwRLfNbYqH_HYgnOtBXzSzmtclLjx3F1bfr1_OnwtGznDp4V7PsYTsB5tbOGV8UyW0OCzys5lU1Qlfi3kUgRXzD0x0NrCz-hWekfrbWWJx6DUDFbDHbRh5MzB7rJuo_uz0WR4EVzdnF8OB1eBZknWBJHKTU4JaA46iQmnSR77B1DOVJgBl8QomQKhHkh0SiKjQs4yTaNcEZpJto32F761rV5af4WYVq0t_ZeCxlHKOQmT1FNkQWlbOWfBiNr6Y-ybCInoshdd0KILWiyy9yuHi5Wiqlee_-AHf-CynoosjEUoOBV1btg3ycuViw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Izidoro, André</creator><creator>Bitsch, Bertram</creator><creator>Dasgupta, Rajdeep</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8868-7649</orcidid><orcidid>https://orcid.org/0000-0003-1878-0634</orcidid><orcidid>https://orcid.org/0000-0001-5392-415X</orcidid></search><sort><creationdate>20210701</creationdate><title>The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion</title><author>Izidoro, André ; Bitsch, Bertram ; Dasgupta, Rajdeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-4bdfd20ec6ec750627d5c75e263b19e6a0fba8e02c6e7c804fb1639c24db029a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion disks</topic><topic>Anomalies</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Coagulation</topic><topic>Deposition</topic><topic>Drift</topic><topic>Embryos</topic><topic>Inner solar system</topic><topic>Mass distribution</topic><topic>Meteorites</topic><topic>Meteors & meteorites</topic><topic>Outer solar system</topic><topic>Planet formation</topic><topic>Planetesimals</topic><topic>Planets</topic><topic>Pressure effects</topic><topic>Protoplanetary disks</topic><topic>Radial drift</topic><topic>Solar system</topic><topic>Solar system evolution</topic><topic>Solar system terrestrial planets</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izidoro, André</creatorcontrib><creatorcontrib>Bitsch, Bertram</creatorcontrib><creatorcontrib>Dasgupta, Rajdeep</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Izidoro, André</au><au>Bitsch, Bertram</au><au>Dasgupta, Rajdeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>915</volume><issue>1</issue><spage>62</spage><pages>62-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Mass-independent isotopic anomalies of carbonaceous and noncarbonaceous meteorites show a clear dichotomy suggesting an efficient separation of the inner and outer solar system. Observations show that ring-like structures in the distribution of millimeter-sized pebbles in protoplanetary disks are common. These structures are often associated with drifting pebbles being trapped by local pressure maxima in the gas disk. Similar structures may also have existed in the Sun’s natal disk, which could naturally explain the meteorite/planetary isotopic dichotomy. Here, we test the effects of a strong pressure bump in the outer disk (e.g., ∼5 au) on the formation of the inner solar system. We model dust coagulation and evolution, planetesimal formation, as well as embryo growth via planetesimal and pebble accretion. Our results show that terrestrial embryos formed via planetesimal accretion rather than pebble accretion. In our model, the radial drift of pebbles fosters planetesimal formation. However, once a pressure bump forms, pebbles in the inner disk are lost via drift before they can be efficiently accreted by embryos growing at ⪆1 au. Embryos inside ∼0.5–1.0 au grow relatively faster and can accrete pebbles more efficiently. However, these same embryos grow to larger masses so they should migrate inwards substantially, which is inconsistent with the current solar system. Therefore, terrestrial planets most likely accreted from giant impacts of Moon to roughly Mars-mass planetary embryos formed around ⪆1.0 au. Finally, our simulations produce a steep radial mass distribution of planetesimals in the terrestrial region, which is qualitatively aligned with formation models suggesting that the asteroid belt was born low mass.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abfe0b</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8868-7649</orcidid><orcidid>https://orcid.org/0000-0003-1878-0634</orcidid><orcidid>https://orcid.org/0000-0001-5392-415X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-07, Vol.915 (1), p.62 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_abfe0b |
source | IOP Publishing Free Content |
subjects | Accretion disks Anomalies Asteroids Astrophysics Coagulation Deposition Drift Embryos Inner solar system Mass distribution Meteorites Meteors & meteorites Outer solar system Planet formation Planetesimals Planets Pressure effects Protoplanetary disks Radial drift Solar system Solar system evolution Solar system terrestrial planets Terrestrial environments Terrestrial planets |
title | The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20a%20Strong%20Pressure%20Bump%20in%20the%20Sun%E2%80%99s%20Natal%20Disk:%20Terrestrial%20Planet%20Formation%20via%20Planetesimal%20Accretion%20Rather%20than%20Pebble%20Accretion&rft.jtitle=The%20Astrophysical%20journal&rft.au=Izidoro,%20Andr%C3%A9&rft.date=2021-07-01&rft.volume=915&rft.issue=1&rft.spage=62&rft.pages=62-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abfe0b&rft_dat=%3Cproquest_O3W%3E2548660178%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548660178&rft_id=info:pmid/&rfr_iscdi=true |