Gyroresonance and Free–Free Radio Emissions from Multithermal Multicomponent Plasma
The solar atmosphere contains thermal plasma at a wide range of temperatures. This plasma is often quantified, in both observations and models, by a differential emission measure (DEM). The DEM is a distribution of the thermal electron density squared over temperature. In observations, the DEM is co...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-06, Vol.914 (1), p.52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 52 |
container_title | The Astrophysical journal |
container_volume | 914 |
creator | Fleishman, Gregory D. Kuznetsov, Alexey A. Landi, Enrico |
description | The solar atmosphere contains thermal plasma at a wide range of temperatures. This plasma is often quantified, in both observations and models, by a differential emission measure (DEM). The DEM is a distribution of the thermal electron
density squared
over temperature. In observations, the DEM is computed along a line of sight, while in the modeling it is over an elementary volume element (voxel). This description of the multithermal plasma is convenient and widely used in the analysis and modeling of extreme ultraviolet emission, which has an optically thin character. However, there is no corresponding treatment in the radio domain, where the optical depth of emission can be large, more than one emission mechanism is involved, and plasma effects are important. Here, we extend the theory of thermal gyroresonance and free–free radio emissions in the classical single-temperature Maxwellian plasma to the case of a multitemperature plasma. The free–free component is computed using the DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of electrons with neutral atoms, the exact Gaunt factor, and the magnetic field effect. For the gyroresonant component, another measure of the multitemperature plasma is used, which describes the distribution of the thermal electron
density
over temperature. We give representative examples demonstrating important changes in the emission intensity and polarization due to the effects considered. The theory is implemented in available computer code. |
doi_str_mv | 10.3847/1538-4357/abf92c |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abf92c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540771913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-97c82309d00e69b1b6ed0e5f721a3b4d6dac9c0f48f0afd62a0ae8f916dfbf6a3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFb3LgfcGnsnk79ZSmmrUFHEgrvhZn4wJcnEmXTRne_gG_okNkR05epwLuecCx8hlwxueJHkM5byIkp4ms-wtCJWR2TyezomEwBIooznr6fkLITtYGMhJmSz2nvnTXAttspQbDVdemO-Pj4Hoc-oK0cXTRVC5dpArXcNfdjVfdW_Gd9gPRrlms61pu3pU42hwXNyYrEO5uJHp2SzXLzM76L14-p-fruOFE-hj0SuipiD0AAmEyUrM6PBpDaPGfIy0ZlGJRTYpLCAVmcxAprCCpZpW9oM-ZRcjbudd-87E3q5dTvfHl7KOE0gz5lg_JCCMaW8C8EbKztfNej3koEc4MmBlBxIyRHeoXI9VirX_W3-G_8GS1Jzbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540771913</pqid></control><display><type>article</type><title>Gyroresonance and Free–Free Radio Emissions from Multithermal Multicomponent Plasma</title><source>IOP Publishing Free Content</source><creator>Fleishman, Gregory D. ; Kuznetsov, Alexey A. ; Landi, Enrico</creator><creatorcontrib>Fleishman, Gregory D. ; Kuznetsov, Alexey A. ; Landi, Enrico</creatorcontrib><description>The solar atmosphere contains thermal plasma at a wide range of temperatures. This plasma is often quantified, in both observations and models, by a differential emission measure (DEM). The DEM is a distribution of the thermal electron
density squared
over temperature. In observations, the DEM is computed along a line of sight, while in the modeling it is over an elementary volume element (voxel). This description of the multithermal plasma is convenient and widely used in the analysis and modeling of extreme ultraviolet emission, which has an optically thin character. However, there is no corresponding treatment in the radio domain, where the optical depth of emission can be large, more than one emission mechanism is involved, and plasma effects are important. Here, we extend the theory of thermal gyroresonance and free–free radio emissions in the classical single-temperature Maxwellian plasma to the case of a multitemperature plasma. The free–free component is computed using the DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of electrons with neutral atoms, the exact Gaunt factor, and the magnetic field effect. For the gyroresonant component, another measure of the multitemperature plasma is used, which describes the distribution of the thermal electron
density
over temperature. We give representative examples demonstrating important changes in the emission intensity and polarization due to the effects considered. The theory is implemented in available computer code.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abf92c</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active sun ; Astrophysics ; Atmospheric models ; Computation ; Coronal ions ; Differential thermal analysis ; Electron density ; Emission analysis ; Emission measurements ; Ionization ; Magnetic fields ; Neutral atoms ; Optical analysis ; Optical thickness ; Plasma ; Quiet sun ; Radio emission ; Solar abundances ; Solar atmosphere ; Solar coronal radio emission ; Solar magnetic fields ; Solar radio emission ; Temperature ; Temperature dependence ; Temperature range ; Thermal plasmas ; Ultraviolet emission</subject><ispartof>The Astrophysical journal, 2021-06, Vol.914 (1), p.52</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-97c82309d00e69b1b6ed0e5f721a3b4d6dac9c0f48f0afd62a0ae8f916dfbf6a3</citedby><cites>FETCH-LOGICAL-c350t-97c82309d00e69b1b6ed0e5f721a3b4d6dac9c0f48f0afd62a0ae8f916dfbf6a3</cites><orcidid>0000-0001-5557-2100 ; 0000-0002-9325-9884 ; 0000-0001-8644-8372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abf92c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abf92c$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Fleishman, Gregory D.</creatorcontrib><creatorcontrib>Kuznetsov, Alexey A.</creatorcontrib><creatorcontrib>Landi, Enrico</creatorcontrib><title>Gyroresonance and Free–Free Radio Emissions from Multithermal Multicomponent Plasma</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The solar atmosphere contains thermal plasma at a wide range of temperatures. This plasma is often quantified, in both observations and models, by a differential emission measure (DEM). The DEM is a distribution of the thermal electron
density squared
over temperature. In observations, the DEM is computed along a line of sight, while in the modeling it is over an elementary volume element (voxel). This description of the multithermal plasma is convenient and widely used in the analysis and modeling of extreme ultraviolet emission, which has an optically thin character. However, there is no corresponding treatment in the radio domain, where the optical depth of emission can be large, more than one emission mechanism is involved, and plasma effects are important. Here, we extend the theory of thermal gyroresonance and free–free radio emissions in the classical single-temperature Maxwellian plasma to the case of a multitemperature plasma. The free–free component is computed using the DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of electrons with neutral atoms, the exact Gaunt factor, and the magnetic field effect. For the gyroresonant component, another measure of the multitemperature plasma is used, which describes the distribution of the thermal electron
density
over temperature. We give representative examples demonstrating important changes in the emission intensity and polarization due to the effects considered. The theory is implemented in available computer code.</description><subject>Active sun</subject><subject>Astrophysics</subject><subject>Atmospheric models</subject><subject>Computation</subject><subject>Coronal ions</subject><subject>Differential thermal analysis</subject><subject>Electron density</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Ionization</subject><subject>Magnetic fields</subject><subject>Neutral atoms</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Plasma</subject><subject>Quiet sun</subject><subject>Radio emission</subject><subject>Solar abundances</subject><subject>Solar atmosphere</subject><subject>Solar coronal radio emission</subject><subject>Solar magnetic fields</subject><subject>Solar radio emission</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature range</subject><subject>Thermal plasmas</subject><subject>Ultraviolet emission</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFb3LgfcGnsnk79ZSmmrUFHEgrvhZn4wJcnEmXTRne_gG_okNkR05epwLuecCx8hlwxueJHkM5byIkp4ms-wtCJWR2TyezomEwBIooznr6fkLITtYGMhJmSz2nvnTXAttspQbDVdemO-Pj4Hoc-oK0cXTRVC5dpArXcNfdjVfdW_Gd9gPRrlms61pu3pU42hwXNyYrEO5uJHp2SzXLzM76L14-p-fruOFE-hj0SuipiD0AAmEyUrM6PBpDaPGfIy0ZlGJRTYpLCAVmcxAprCCpZpW9oM-ZRcjbudd-87E3q5dTvfHl7KOE0gz5lg_JCCMaW8C8EbKztfNej3koEc4MmBlBxIyRHeoXI9VirX_W3-G_8GS1Jzbg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fleishman, Gregory D.</creator><creator>Kuznetsov, Alexey A.</creator><creator>Landi, Enrico</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5557-2100</orcidid><orcidid>https://orcid.org/0000-0002-9325-9884</orcidid><orcidid>https://orcid.org/0000-0001-8644-8372</orcidid></search><sort><creationdate>20210601</creationdate><title>Gyroresonance and Free–Free Radio Emissions from Multithermal Multicomponent Plasma</title><author>Fleishman, Gregory D. ; Kuznetsov, Alexey A. ; Landi, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-97c82309d00e69b1b6ed0e5f721a3b4d6dac9c0f48f0afd62a0ae8f916dfbf6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active sun</topic><topic>Astrophysics</topic><topic>Atmospheric models</topic><topic>Computation</topic><topic>Coronal ions</topic><topic>Differential thermal analysis</topic><topic>Electron density</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Ionization</topic><topic>Magnetic fields</topic><topic>Neutral atoms</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Plasma</topic><topic>Quiet sun</topic><topic>Radio emission</topic><topic>Solar abundances</topic><topic>Solar atmosphere</topic><topic>Solar coronal radio emission</topic><topic>Solar magnetic fields</topic><topic>Solar radio emission</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature range</topic><topic>Thermal plasmas</topic><topic>Ultraviolet emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleishman, Gregory D.</creatorcontrib><creatorcontrib>Kuznetsov, Alexey A.</creatorcontrib><creatorcontrib>Landi, Enrico</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fleishman, Gregory D.</au><au>Kuznetsov, Alexey A.</au><au>Landi, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gyroresonance and Free–Free Radio Emissions from Multithermal Multicomponent Plasma</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>914</volume><issue>1</issue><spage>52</spage><pages>52-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The solar atmosphere contains thermal plasma at a wide range of temperatures. This plasma is often quantified, in both observations and models, by a differential emission measure (DEM). The DEM is a distribution of the thermal electron
density squared
over temperature. In observations, the DEM is computed along a line of sight, while in the modeling it is over an elementary volume element (voxel). This description of the multithermal plasma is convenient and widely used in the analysis and modeling of extreme ultraviolet emission, which has an optically thin character. However, there is no corresponding treatment in the radio domain, where the optical depth of emission can be large, more than one emission mechanism is involved, and plasma effects are important. Here, we extend the theory of thermal gyroresonance and free–free radio emissions in the classical single-temperature Maxwellian plasma to the case of a multitemperature plasma. The free–free component is computed using the DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of electrons with neutral atoms, the exact Gaunt factor, and the magnetic field effect. For the gyroresonant component, another measure of the multitemperature plasma is used, which describes the distribution of the thermal electron
density
over temperature. We give representative examples demonstrating important changes in the emission intensity and polarization due to the effects considered. The theory is implemented in available computer code.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abf92c</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5557-2100</orcidid><orcidid>https://orcid.org/0000-0002-9325-9884</orcidid><orcidid>https://orcid.org/0000-0001-8644-8372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-06, Vol.914 (1), p.52 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_abf92c |
source | IOP Publishing Free Content |
subjects | Active sun Astrophysics Atmospheric models Computation Coronal ions Differential thermal analysis Electron density Emission analysis Emission measurements Ionization Magnetic fields Neutral atoms Optical analysis Optical thickness Plasma Quiet sun Radio emission Solar abundances Solar atmosphere Solar coronal radio emission Solar magnetic fields Solar radio emission Temperature Temperature dependence Temperature range Thermal plasmas Ultraviolet emission |
title | Gyroresonance and Free–Free Radio Emissions from Multithermal Multicomponent Plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gyroresonance%20and%20Free%E2%80%93Free%20Radio%20Emissions%20from%20Multithermal%20Multicomponent%20Plasma&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fleishman,%20Gregory%20D.&rft.date=2021-06-01&rft.volume=914&rft.issue=1&rft.spage=52&rft.pages=52-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abf92c&rft_dat=%3Cproquest_O3W%3E2540771913%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540771913&rft_id=info:pmid/&rfr_iscdi=true |