A Theoretical Framework for the Mass Distribution of Gas Giant Planets Forming through the Core Accretion Paradigm
This paper constructs a theoretical framework for calculating the distribution of masses for gas giant planets forming via the core accretion paradigm. Starting with known properties of circumstellar disks, we present models for the planetary mass distribution over the range 0.1 M J ≤ M p < 10 M...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-03, Vol.909 (1), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 909 |
creator | Adams, Fred C. Meyer, Michael R. Adams, Arthur D. |
description | This paper constructs a theoretical framework for calculating the distribution of masses for gas giant planets forming via the core accretion paradigm. Starting with known properties of circumstellar disks, we present models for the planetary mass distribution over the range 0.1
M
J
≤
M
p
< 10
M
J
. If the circumstellar disk lifetime is solely responsible for the end of planetary mass accretion, the observed (nearly) exponential distribution of disk lifetime would imprint an exponential falloff in the planetary mass function. This result is in apparent conflict with observations, which suggest that the mass distribution has a (nearly) power-law form of
, with an index of
p
≈ 1.3, over the relevant planetary mass range (and for stellar masses ∼0.5–2
M
⊙
). The mass accretion rate onto the planet depends on the fraction of the (circumstellar) disk accretion flow that enters the Hill sphere, and on the efficiency with which the planet captures the incoming material. Models for the planetary mass function that include distributions for these efficiencies, with uninformed priors, can produce nearly power-law behavior, consistent with current observations. The disk lifetimes, accretion rates, and other input parameters depend on the mass of the host star. We show how these variations lead to different forms for the planetary mass function for different stellar masses. Compared to stars with masses
M
*
= 0.5–2
M
⊙
, stars with smaller masses are predicted to have a steeper planetary mass function (fewer large planets). |
doi_str_mv | 10.3847/1538-4357/abdd2b |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abdd2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494934873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-115e563269b7a73d6085741af6a90744aadf38e8c919b1b5fb5a95e34559d8823</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwGv1iVN0ibHMd0UFHeY4C28tumWuTYzSRH_e1snevL0eI_f93vwIXRJyQ2TPJ9QwWTCmcgnUFRVWhyh0e_pGI0IITzJWP56is5C2A5rqtQI-SlebYzzJtoSdnjuoTEfzr_h2nkcNwY_QQj41obobdFF61rsaryAgBcW2oiXO2hNDHjufGPbdY9416033-isr8XTshzKe24JHiq7bs7RSQ27YC5-5hi9zO9Ws_vk8XnxMJs-JiUTJCaUCiMylmaqyCFnVUakyDmFOgNFcs4BqppJI0tFVUELURcClDCMC6EqKVM2RleH3r13750JUW9d59v-pU654opxmbM-RQ6p0rsQvKn13tsG_KemRA9m9aBRDxr1wWyPXB8Q6_Z_nf_GvwC6aHrF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494934873</pqid></control><display><type>article</type><title>A Theoretical Framework for the Mass Distribution of Gas Giant Planets Forming through the Core Accretion Paradigm</title><source>IOP Publishing Free Content</source><creator>Adams, Fred C. ; Meyer, Michael R. ; Adams, Arthur D.</creator><creatorcontrib>Adams, Fred C. ; Meyer, Michael R. ; Adams, Arthur D.</creatorcontrib><description>This paper constructs a theoretical framework for calculating the distribution of masses for gas giant planets forming via the core accretion paradigm. Starting with known properties of circumstellar disks, we present models for the planetary mass distribution over the range 0.1
M
J
≤
M
p
< 10
M
J
. If the circumstellar disk lifetime is solely responsible for the end of planetary mass accretion, the observed (nearly) exponential distribution of disk lifetime would imprint an exponential falloff in the planetary mass function. This result is in apparent conflict with observations, which suggest that the mass distribution has a (nearly) power-law form of
, with an index of
p
≈ 1.3, over the relevant planetary mass range (and for stellar masses ∼0.5–2
M
⊙
). The mass accretion rate onto the planet depends on the fraction of the (circumstellar) disk accretion flow that enters the Hill sphere, and on the efficiency with which the planet captures the incoming material. Models for the planetary mass function that include distributions for these efficiencies, with uninformed priors, can produce nearly power-law behavior, consistent with current observations. The disk lifetimes, accretion rates, and other input parameters depend on the mass of the host star. We show how these variations lead to different forms for the planetary mass function for different stellar masses. Compared to stars with masses
M
*
= 0.5–2
M
⊙
, stars with smaller masses are predicted to have a steeper planetary mass function (fewer large planets).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abdd2b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Astrophysics ; Exoplanet astronomy ; Exoplanet formation ; Gas giant planets ; Mass distribution ; Planet formation ; Planetary mass ; Planets ; Power law ; Probability distribution functions ; Stars</subject><ispartof>The Astrophysical journal, 2021-03, Vol.909 (1), p.1</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-115e563269b7a73d6085741af6a90744aadf38e8c919b1b5fb5a95e34559d8823</citedby><cites>FETCH-LOGICAL-c350t-115e563269b7a73d6085741af6a90744aadf38e8c919b1b5fb5a95e34559d8823</cites><orcidid>0000-0002-7139-3695 ; 0000-0002-8167-1767 ; 0000-0003-1227-3084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abdd2b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abdd2b$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Adams, Fred C.</creatorcontrib><creatorcontrib>Meyer, Michael R.</creatorcontrib><creatorcontrib>Adams, Arthur D.</creatorcontrib><title>A Theoretical Framework for the Mass Distribution of Gas Giant Planets Forming through the Core Accretion Paradigm</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>This paper constructs a theoretical framework for calculating the distribution of masses for gas giant planets forming via the core accretion paradigm. Starting with known properties of circumstellar disks, we present models for the planetary mass distribution over the range 0.1
M
J
≤
M
p
< 10
M
J
. If the circumstellar disk lifetime is solely responsible for the end of planetary mass accretion, the observed (nearly) exponential distribution of disk lifetime would imprint an exponential falloff in the planetary mass function. This result is in apparent conflict with observations, which suggest that the mass distribution has a (nearly) power-law form of
, with an index of
p
≈ 1.3, over the relevant planetary mass range (and for stellar masses ∼0.5–2
M
⊙
). The mass accretion rate onto the planet depends on the fraction of the (circumstellar) disk accretion flow that enters the Hill sphere, and on the efficiency with which the planet captures the incoming material. Models for the planetary mass function that include distributions for these efficiencies, with uninformed priors, can produce nearly power-law behavior, consistent with current observations. The disk lifetimes, accretion rates, and other input parameters depend on the mass of the host star. We show how these variations lead to different forms for the planetary mass function for different stellar masses. Compared to stars with masses
M
*
= 0.5–2
M
⊙
, stars with smaller masses are predicted to have a steeper planetary mass function (fewer large planets).</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Exoplanet astronomy</subject><subject>Exoplanet formation</subject><subject>Gas giant planets</subject><subject>Mass distribution</subject><subject>Planet formation</subject><subject>Planetary mass</subject><subject>Planets</subject><subject>Power law</subject><subject>Probability distribution functions</subject><subject>Stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwGv1iVN0ibHMd0UFHeY4C28tumWuTYzSRH_e1snevL0eI_f93vwIXRJyQ2TPJ9QwWTCmcgnUFRVWhyh0e_pGI0IITzJWP56is5C2A5rqtQI-SlebYzzJtoSdnjuoTEfzr_h2nkcNwY_QQj41obobdFF61rsaryAgBcW2oiXO2hNDHjufGPbdY9416033-isr8XTshzKe24JHiq7bs7RSQ27YC5-5hi9zO9Ws_vk8XnxMJs-JiUTJCaUCiMylmaqyCFnVUakyDmFOgNFcs4BqppJI0tFVUELURcClDCMC6EqKVM2RleH3r13750JUW9d59v-pU654opxmbM-RQ6p0rsQvKn13tsG_KemRA9m9aBRDxr1wWyPXB8Q6_Z_nf_GvwC6aHrF</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Adams, Fred C.</creator><creator>Meyer, Michael R.</creator><creator>Adams, Arthur D.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7139-3695</orcidid><orcidid>https://orcid.org/0000-0002-8167-1767</orcidid><orcidid>https://orcid.org/0000-0003-1227-3084</orcidid></search><sort><creationdate>20210301</creationdate><title>A Theoretical Framework for the Mass Distribution of Gas Giant Planets Forming through the Core Accretion Paradigm</title><author>Adams, Fred C. ; Meyer, Michael R. ; Adams, Arthur D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-115e563269b7a73d6085741af6a90744aadf38e8c919b1b5fb5a95e34559d8823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Exoplanet astronomy</topic><topic>Exoplanet formation</topic><topic>Gas giant planets</topic><topic>Mass distribution</topic><topic>Planet formation</topic><topic>Planetary mass</topic><topic>Planets</topic><topic>Power law</topic><topic>Probability distribution functions</topic><topic>Stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Fred C.</creatorcontrib><creatorcontrib>Meyer, Michael R.</creatorcontrib><creatorcontrib>Adams, Arthur D.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adams, Fred C.</au><au>Meyer, Michael R.</au><au>Adams, Arthur D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theoretical Framework for the Mass Distribution of Gas Giant Planets Forming through the Core Accretion Paradigm</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>909</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>This paper constructs a theoretical framework for calculating the distribution of masses for gas giant planets forming via the core accretion paradigm. Starting with known properties of circumstellar disks, we present models for the planetary mass distribution over the range 0.1
M
J
≤
M
p
< 10
M
J
. If the circumstellar disk lifetime is solely responsible for the end of planetary mass accretion, the observed (nearly) exponential distribution of disk lifetime would imprint an exponential falloff in the planetary mass function. This result is in apparent conflict with observations, which suggest that the mass distribution has a (nearly) power-law form of
, with an index of
p
≈ 1.3, over the relevant planetary mass range (and for stellar masses ∼0.5–2
M
⊙
). The mass accretion rate onto the planet depends on the fraction of the (circumstellar) disk accretion flow that enters the Hill sphere, and on the efficiency with which the planet captures the incoming material. Models for the planetary mass function that include distributions for these efficiencies, with uninformed priors, can produce nearly power-law behavior, consistent with current observations. The disk lifetimes, accretion rates, and other input parameters depend on the mass of the host star. We show how these variations lead to different forms for the planetary mass function for different stellar masses. Compared to stars with masses
M
*
= 0.5–2
M
⊙
, stars with smaller masses are predicted to have a steeper planetary mass function (fewer large planets).</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abdd2b</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7139-3695</orcidid><orcidid>https://orcid.org/0000-0002-8167-1767</orcidid><orcidid>https://orcid.org/0000-0003-1227-3084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-03, Vol.909 (1), p.1 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_abdd2b |
source | IOP Publishing Free Content |
subjects | Accretion disks Astrophysics Exoplanet astronomy Exoplanet formation Gas giant planets Mass distribution Planet formation Planetary mass Planets Power law Probability distribution functions Stars |
title | A Theoretical Framework for the Mass Distribution of Gas Giant Planets Forming through the Core Accretion Paradigm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theoretical%20Framework%20for%20the%20Mass%20Distribution%20of%20Gas%20Giant%20Planets%20Forming%20through%20the%20Core%20Accretion%20Paradigm&rft.jtitle=The%20Astrophysical%20journal&rft.au=Adams,%20Fred%20C.&rft.date=2021-03-01&rft.volume=909&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abdd2b&rft_dat=%3Cproquest_O3W%3E2494934873%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494934873&rft_id=info:pmid/&rfr_iscdi=true |