Laboratory Study of the Torus Instability Threshold in Solar-relevant, Line-tied Magnetic Flux Ropes

Coronal mass ejections (CMEs) occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal magnetohydrodynamic instability called the torus instability. It occurs when the external...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-02, Vol.908 (1), p.41
Hauptverfasser: Alt, Andrew, Myers, Clayton E., Ji, Hantao, Jara-Almonte, Jonathan, Yoo, Jongsoo, Bose, Sayak, Goodman, Aaron, Yamada, Masaaki, Kliem, Bernhard, Savcheva, Antonia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 41
container_title The Astrophysical journal
container_volume 908
creator Alt, Andrew
Myers, Clayton E.
Ji, Hantao
Jara-Almonte, Jonathan
Yoo, Jongsoo
Bose, Sayak
Goodman, Aaron
Yamada, Masaaki
Kliem, Bernhard
Savcheva, Antonia
description Coronal mass ejections (CMEs) occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal magnetohydrodynamic instability called the torus instability. It occurs when the external magnetic field decreases sufficiently fast such that its decay index, , is larger than a critical value, , where for a full, large aspect ratio torus. However, when this is applied to solar MFRs, a range of conflicting values for is found in the literature. To investigate this discrepancy, we have conducted laboratory experiments on arched, line-tied flux ropes and applied a theoretical model of the torus instability. Our model describes an MFR as a partial torus with foot points anchored in a conducting surface and numerically calculates various magnetic forces on it. This calculation yields better predictions of that take into account the specific parameters of the MFR. We describe a systematic methodology to properly translate laboratory results to their solar counterparts, provided that the MFRs have a sufficiently small edge safety factor or, equivalently, a large enough twist. After this translation, our model predicts that in solar conditions falls near and within a larger range of , depending on the parameters. The methodology of translating laboratory MFRs to their solar counterparts enables quantitative investigations of CME initiation through laboratory experiments. These experiments allow for new physics insights that are required for better predictions of space weather events but are difficult to obtain otherwise.
doi_str_mv 10.3847/1538-4357/abda4b
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abda4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489764846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-d115cc5054c65665c180498a8fc001826e34ee422249b9e702a2667309c8c1023</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePQa9Wk3SNB9HEb9gRXBX8BbSdNaN1GZNUnH_vVsqevI0zPC8L8OD0DEl56Xi8oJWpSp4WckLWzeW1zto8nvaRRNCCC9EKV_20UFKb8PKtJ6gZmbrEG0OcYPnuW82OCxxXgFehNgnfN-lbGvf-rzBi1WEtAptg32H56G1sYjQwqft8hme-Q6K7KHBD_a1g-wdvmn7L_wU1pAO0d7StgmOfuYUPd9cL67uitnj7f3V5axwpZS5aCitnKtIxZ2ohKgcVYRrZdXSEUIVE1ByAM4Y47rWIAmzTAhZEu2Uo4SVU3Qy9oaUvUnOZ3ArF7oOXDZUCq2Z2EKnI7SO4aOHlM1b6GO3_cswrrQUXPGBIiPlYkgpwtKso3-3cWMoMYNwM9g1g10zCt9GzsaID-u_zn_xbycOgOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489764846</pqid></control><display><type>article</type><title>Laboratory Study of the Torus Instability Threshold in Solar-relevant, Line-tied Magnetic Flux Ropes</title><source>Institute of Physics Open Access Journal Titles</source><creator>Alt, Andrew ; Myers, Clayton E. ; Ji, Hantao ; Jara-Almonte, Jonathan ; Yoo, Jongsoo ; Bose, Sayak ; Goodman, Aaron ; Yamada, Masaaki ; Kliem, Bernhard ; Savcheva, Antonia</creator><creatorcontrib>Alt, Andrew ; Myers, Clayton E. ; Ji, Hantao ; Jara-Almonte, Jonathan ; Yoo, Jongsoo ; Bose, Sayak ; Goodman, Aaron ; Yamada, Masaaki ; Kliem, Bernhard ; Savcheva, Antonia ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Coronal mass ejections (CMEs) occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal magnetohydrodynamic instability called the torus instability. It occurs when the external magnetic field decreases sufficiently fast such that its decay index, , is larger than a critical value, , where for a full, large aspect ratio torus. However, when this is applied to solar MFRs, a range of conflicting values for is found in the literature. To investigate this discrepancy, we have conducted laboratory experiments on arched, line-tied flux ropes and applied a theoretical model of the torus instability. Our model describes an MFR as a partial torus with foot points anchored in a conducting surface and numerically calculates various magnetic forces on it. This calculation yields better predictions of that take into account the specific parameters of the MFR. We describe a systematic methodology to properly translate laboratory results to their solar counterparts, provided that the MFRs have a sufficiently small edge safety factor or, equivalently, a large enough twist. After this translation, our model predicts that in solar conditions falls near and within a larger range of , depending on the parameters. The methodology of translating laboratory MFRs to their solar counterparts enables quantitative investigations of CME initiation through laboratory experiments. These experiments allow for new physics insights that are required for better predictions of space weather events but are difficult to obtain otherwise.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abda4b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aspect ratio ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Computational fluid dynamics ; Coronal mass ejection ; Decay rate ; Destabilization ; Experiments ; Fluctuations ; Fluid flow ; Instability ; Laboratories ; Laboratory astrophysics ; Laboratory experiments ; Magnetic fields ; Magnetic flux ; Magnetohydrodynamic stability ; Magnetohydrodynamics ; Mathematical models ; Parameters ; Safety factors ; Solar corona ; Solar coronal mass ejections ; Solar flares ; Solar magnetic fields ; Solar surface ; Space weather ; Stability ; Toruses ; Weather</subject><ispartof>The Astrophysical journal, 2021-02, Vol.908 (1), p.41</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-d115cc5054c65665c180498a8fc001826e34ee422249b9e702a2667309c8c1023</citedby><cites>FETCH-LOGICAL-c377t-d115cc5054c65665c180498a8fc001826e34ee422249b9e702a2667309c8c1023</cites><orcidid>0000-0003-4539-8406 ; 0000-0001-9475-8282 ; 0000-0002-5598-046X ; 0000-0003-3881-1995 ; 0000-0003-0760-6198 ; 0000-0003-3639-6572 ; 0000-0003-4996-1649 ; 0000-0001-8093-9322 ; 0000-0002-5740-8803 ; 0000-0001-9600-9963 ; 0000000196009963 ; 0000000345398406 ; 0000000338811995 ; 000000025598046X ; 0000000336396572 ; 0000000194758282 ; 0000000180939322 ; 0000000307606198 ; 0000000349961649 ; 0000000257408803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abda4b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abda4b$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1769926$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alt, Andrew</creatorcontrib><creatorcontrib>Myers, Clayton E.</creatorcontrib><creatorcontrib>Ji, Hantao</creatorcontrib><creatorcontrib>Jara-Almonte, Jonathan</creatorcontrib><creatorcontrib>Yoo, Jongsoo</creatorcontrib><creatorcontrib>Bose, Sayak</creatorcontrib><creatorcontrib>Goodman, Aaron</creatorcontrib><creatorcontrib>Yamada, Masaaki</creatorcontrib><creatorcontrib>Kliem, Bernhard</creatorcontrib><creatorcontrib>Savcheva, Antonia</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Laboratory Study of the Torus Instability Threshold in Solar-relevant, Line-tied Magnetic Flux Ropes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Coronal mass ejections (CMEs) occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal magnetohydrodynamic instability called the torus instability. It occurs when the external magnetic field decreases sufficiently fast such that its decay index, , is larger than a critical value, , where for a full, large aspect ratio torus. However, when this is applied to solar MFRs, a range of conflicting values for is found in the literature. To investigate this discrepancy, we have conducted laboratory experiments on arched, line-tied flux ropes and applied a theoretical model of the torus instability. Our model describes an MFR as a partial torus with foot points anchored in a conducting surface and numerically calculates various magnetic forces on it. This calculation yields better predictions of that take into account the specific parameters of the MFR. We describe a systematic methodology to properly translate laboratory results to their solar counterparts, provided that the MFRs have a sufficiently small edge safety factor or, equivalently, a large enough twist. After this translation, our model predicts that in solar conditions falls near and within a larger range of , depending on the parameters. The methodology of translating laboratory MFRs to their solar counterparts enables quantitative investigations of CME initiation through laboratory experiments. These experiments allow for new physics insights that are required for better predictions of space weather events but are difficult to obtain otherwise.</description><subject>Aspect ratio</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Coronal mass ejection</subject><subject>Decay rate</subject><subject>Destabilization</subject><subject>Experiments</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Instability</subject><subject>Laboratories</subject><subject>Laboratory astrophysics</subject><subject>Laboratory experiments</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetohydrodynamic stability</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Safety factors</subject><subject>Solar corona</subject><subject>Solar coronal mass ejections</subject><subject>Solar flares</subject><subject>Solar magnetic fields</subject><subject>Solar surface</subject><subject>Space weather</subject><subject>Stability</subject><subject>Toruses</subject><subject>Weather</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePQa9Wk3SNB9HEb9gRXBX8BbSdNaN1GZNUnH_vVsqevI0zPC8L8OD0DEl56Xi8oJWpSp4WckLWzeW1zto8nvaRRNCCC9EKV_20UFKb8PKtJ6gZmbrEG0OcYPnuW82OCxxXgFehNgnfN-lbGvf-rzBi1WEtAptg32H56G1sYjQwqft8hme-Q6K7KHBD_a1g-wdvmn7L_wU1pAO0d7StgmOfuYUPd9cL67uitnj7f3V5axwpZS5aCitnKtIxZ2ohKgcVYRrZdXSEUIVE1ByAM4Y47rWIAmzTAhZEu2Uo4SVU3Qy9oaUvUnOZ3ArF7oOXDZUCq2Z2EKnI7SO4aOHlM1b6GO3_cswrrQUXPGBIiPlYkgpwtKso3-3cWMoMYNwM9g1g10zCt9GzsaID-u_zn_xbycOgOc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Alt, Andrew</creator><creator>Myers, Clayton E.</creator><creator>Ji, Hantao</creator><creator>Jara-Almonte, Jonathan</creator><creator>Yoo, Jongsoo</creator><creator>Bose, Sayak</creator><creator>Goodman, Aaron</creator><creator>Yamada, Masaaki</creator><creator>Kliem, Bernhard</creator><creator>Savcheva, Antonia</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4539-8406</orcidid><orcidid>https://orcid.org/0000-0001-9475-8282</orcidid><orcidid>https://orcid.org/0000-0002-5598-046X</orcidid><orcidid>https://orcid.org/0000-0003-3881-1995</orcidid><orcidid>https://orcid.org/0000-0003-0760-6198</orcidid><orcidid>https://orcid.org/0000-0003-3639-6572</orcidid><orcidid>https://orcid.org/0000-0003-4996-1649</orcidid><orcidid>https://orcid.org/0000-0001-8093-9322</orcidid><orcidid>https://orcid.org/0000-0002-5740-8803</orcidid><orcidid>https://orcid.org/0000-0001-9600-9963</orcidid><orcidid>https://orcid.org/0000000196009963</orcidid><orcidid>https://orcid.org/0000000345398406</orcidid><orcidid>https://orcid.org/0000000338811995</orcidid><orcidid>https://orcid.org/000000025598046X</orcidid><orcidid>https://orcid.org/0000000336396572</orcidid><orcidid>https://orcid.org/0000000194758282</orcidid><orcidid>https://orcid.org/0000000180939322</orcidid><orcidid>https://orcid.org/0000000307606198</orcidid><orcidid>https://orcid.org/0000000349961649</orcidid><orcidid>https://orcid.org/0000000257408803</orcidid></search><sort><creationdate>20210201</creationdate><title>Laboratory Study of the Torus Instability Threshold in Solar-relevant, Line-tied Magnetic Flux Ropes</title><author>Alt, Andrew ; Myers, Clayton E. ; Ji, Hantao ; Jara-Almonte, Jonathan ; Yoo, Jongsoo ; Bose, Sayak ; Goodman, Aaron ; Yamada, Masaaki ; Kliem, Bernhard ; Savcheva, Antonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-d115cc5054c65665c180498a8fc001826e34ee422249b9e702a2667309c8c1023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Coronal mass ejection</topic><topic>Decay rate</topic><topic>Destabilization</topic><topic>Experiments</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Instability</topic><topic>Laboratories</topic><topic>Laboratory astrophysics</topic><topic>Laboratory experiments</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetohydrodynamic stability</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Safety factors</topic><topic>Solar corona</topic><topic>Solar coronal mass ejections</topic><topic>Solar flares</topic><topic>Solar magnetic fields</topic><topic>Solar surface</topic><topic>Space weather</topic><topic>Stability</topic><topic>Toruses</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alt, Andrew</creatorcontrib><creatorcontrib>Myers, Clayton E.</creatorcontrib><creatorcontrib>Ji, Hantao</creatorcontrib><creatorcontrib>Jara-Almonte, Jonathan</creatorcontrib><creatorcontrib>Yoo, Jongsoo</creatorcontrib><creatorcontrib>Bose, Sayak</creatorcontrib><creatorcontrib>Goodman, Aaron</creatorcontrib><creatorcontrib>Yamada, Masaaki</creatorcontrib><creatorcontrib>Kliem, Bernhard</creatorcontrib><creatorcontrib>Savcheva, Antonia</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alt, Andrew</au><au>Myers, Clayton E.</au><au>Ji, Hantao</au><au>Jara-Almonte, Jonathan</au><au>Yoo, Jongsoo</au><au>Bose, Sayak</au><au>Goodman, Aaron</au><au>Yamada, Masaaki</au><au>Kliem, Bernhard</au><au>Savcheva, Antonia</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laboratory Study of the Torus Instability Threshold in Solar-relevant, Line-tied Magnetic Flux Ropes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>908</volume><issue>1</issue><spage>41</spage><pages>41-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Coronal mass ejections (CMEs) occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal magnetohydrodynamic instability called the torus instability. It occurs when the external magnetic field decreases sufficiently fast such that its decay index, , is larger than a critical value, , where for a full, large aspect ratio torus. However, when this is applied to solar MFRs, a range of conflicting values for is found in the literature. To investigate this discrepancy, we have conducted laboratory experiments on arched, line-tied flux ropes and applied a theoretical model of the torus instability. Our model describes an MFR as a partial torus with foot points anchored in a conducting surface and numerically calculates various magnetic forces on it. This calculation yields better predictions of that take into account the specific parameters of the MFR. We describe a systematic methodology to properly translate laboratory results to their solar counterparts, provided that the MFRs have a sufficiently small edge safety factor or, equivalently, a large enough twist. After this translation, our model predicts that in solar conditions falls near and within a larger range of , depending on the parameters. The methodology of translating laboratory MFRs to their solar counterparts enables quantitative investigations of CME initiation through laboratory experiments. These experiments allow for new physics insights that are required for better predictions of space weather events but are difficult to obtain otherwise.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abda4b</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4539-8406</orcidid><orcidid>https://orcid.org/0000-0001-9475-8282</orcidid><orcidid>https://orcid.org/0000-0002-5598-046X</orcidid><orcidid>https://orcid.org/0000-0003-3881-1995</orcidid><orcidid>https://orcid.org/0000-0003-0760-6198</orcidid><orcidid>https://orcid.org/0000-0003-3639-6572</orcidid><orcidid>https://orcid.org/0000-0003-4996-1649</orcidid><orcidid>https://orcid.org/0000-0001-8093-9322</orcidid><orcidid>https://orcid.org/0000-0002-5740-8803</orcidid><orcidid>https://orcid.org/0000-0001-9600-9963</orcidid><orcidid>https://orcid.org/0000000196009963</orcidid><orcidid>https://orcid.org/0000000345398406</orcidid><orcidid>https://orcid.org/0000000338811995</orcidid><orcidid>https://orcid.org/000000025598046X</orcidid><orcidid>https://orcid.org/0000000336396572</orcidid><orcidid>https://orcid.org/0000000194758282</orcidid><orcidid>https://orcid.org/0000000180939322</orcidid><orcidid>https://orcid.org/0000000307606198</orcidid><orcidid>https://orcid.org/0000000349961649</orcidid><orcidid>https://orcid.org/0000000257408803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-02, Vol.908 (1), p.41
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_abda4b
source Institute of Physics Open Access Journal Titles
subjects Aspect ratio
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Computational fluid dynamics
Coronal mass ejection
Decay rate
Destabilization
Experiments
Fluctuations
Fluid flow
Instability
Laboratories
Laboratory astrophysics
Laboratory experiments
Magnetic fields
Magnetic flux
Magnetohydrodynamic stability
Magnetohydrodynamics
Mathematical models
Parameters
Safety factors
Solar corona
Solar coronal mass ejections
Solar flares
Solar magnetic fields
Solar surface
Space weather
Stability
Toruses
Weather
title Laboratory Study of the Torus Instability Threshold in Solar-relevant, Line-tied Magnetic Flux Ropes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laboratory%20Study%20of%20the%20Torus%20Instability%20Threshold%20in%20Solar-relevant,%20Line-tied%20Magnetic%20Flux%20Ropes&rft.jtitle=The%20Astrophysical%20journal&rft.au=Alt,%20Andrew&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-02-01&rft.volume=908&rft.issue=1&rft.spage=41&rft.pages=41-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abda4b&rft_dat=%3Cproquest_O3W%3E2489764846%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489764846&rft_id=info:pmid/&rfr_iscdi=true