Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers
On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-02, Vol.907 (2), p.97 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 97 |
container_title | The Astrophysical journal |
container_volume | 907 |
creator | Klingler, N. J. Lien, A. Oates, S. R. Kennea, J. A. Evans, P. A. Tohuvavohu, A. Zhang, B. Page, K. L. Cenko, S. B. Barthelmy, S. D. Beardmore, A. P. Bernardini, M. G. Breeveld, A. A. Brown, P. J. Burrows, D. N. Campana, S. Cusumano, G. D'Aì, A. D'Avanzo, P. D'Elia, V. Pasquale, M. de Emery, S. W. K. Garcia, J. Giommi, P. Gronwall, C. Hartmann, D. H. Krimm, H. A. Kuin, N. P. M. Malesani, D. B. Marshall, F. E. Melandri, A. Nousek, J. A. O'Brien, P. T. Osborne, J. P. Palmer, D. M. Page, M. J. Perri, M. Racusin, J. L. Sakamoto, T. Sbarufatti, B. Schlieder, J. E. Siegel, M. H. Tagliaferri, G. Troja, E. |
description | On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E < 4.1 × 1051 erg (assuming typical GRB parameters). |
doi_str_mv | 10.3847/1538-4357/abd2c3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abd2c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487457776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMzBYgpFQf8VORqgordSKoYDYLCex25Q0DnZKxX-PoyBYYDrd3e_uPT0AzjG6oQkTIxzTJGI0FiOVFSSnB2DwMzoEA4QQizgVr8fgxPtN15I0HYB8uS9NCxe7qi336kNXul61azixVWX30a6B1sD5yxguCUKEsFxBVRewXWs42zZVmau2tLWHxjp4V9bKfcK7SuVvcGorDRfarbTzp-DIqMrrs-86BM-T-6fxNJo_PszGt_MoZ5y3UYGRpqLQGTcp0qJIMxbTDCuDOMI8JjgzKksx5azAqtCKUJVplghGEpQQk9MhuOz_Ns6-77Rv5cbuXB0kJem4WAjBA4V6KnfWe6eNbFy5Dc4lRrKLUna5yS432UcZTi76k1p5JevWhYeIYBRs4QSH9VW_Lm3zK6majUyRkESmQjaFCdj1H9i_ol_1B4kh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487457776</pqid></control><display><type>article</type><title>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</title><source>IOP Publishing Free Content</source><creator>Klingler, N. J. ; Lien, A. ; Oates, S. R. ; Kennea, J. A. ; Evans, P. A. ; Tohuvavohu, A. ; Zhang, B. ; Page, K. L. ; Cenko, S. B. ; Barthelmy, S. D. ; Beardmore, A. P. ; Bernardini, M. G. ; Breeveld, A. A. ; Brown, P. J. ; Burrows, D. N. ; Campana, S. ; Cusumano, G. ; D'Aì, A. ; D'Avanzo, P. ; D'Elia, V. ; Pasquale, M. de ; Emery, S. W. K. ; Garcia, J. ; Giommi, P. ; Gronwall, C. ; Hartmann, D. H. ; Krimm, H. A. ; Kuin, N. P. M. ; Malesani, D. B. ; Marshall, F. E. ; Melandri, A. ; Nousek, J. A. ; O'Brien, P. T. ; Osborne, J. P. ; Palmer, D. M. ; Page, M. J. ; Perri, M. ; Racusin, J. L. ; Sakamoto, T. ; Sbarufatti, B. ; Schlieder, J. E. ; Siegel, M. H. ; Tagliaferri, G. ; Troja, E.</creator><creatorcontrib>Klingler, N. J. ; Lien, A. ; Oates, S. R. ; Kennea, J. A. ; Evans, P. A. ; Tohuvavohu, A. ; Zhang, B. ; Page, K. L. ; Cenko, S. B. ; Barthelmy, S. D. ; Beardmore, A. P. ; Bernardini, M. G. ; Breeveld, A. A. ; Brown, P. J. ; Burrows, D. N. ; Campana, S. ; Cusumano, G. ; D'Aì, A. ; D'Avanzo, P. ; D'Elia, V. ; Pasquale, M. de ; Emery, S. W. K. ; Garcia, J. ; Giommi, P. ; Gronwall, C. ; Hartmann, D. H. ; Krimm, H. A. ; Kuin, N. P. M. ; Malesani, D. B. ; Marshall, F. E. ; Melandri, A. ; Nousek, J. A. ; O'Brien, P. T. ; Osborne, J. P. ; Palmer, D. M. ; Page, M. J. ; Perri, M. ; Racusin, J. L. ; Sakamoto, T. ; Sbarufatti, B. ; Schlieder, J. E. ; Siegel, M. H. ; Tagliaferri, G. ; Troja, E.</creatorcontrib><description>On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E < 4.1 × 1051 erg (assuming typical GRB parameters).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abd2c3</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Astronomy ; Astrophysics ; Black holes ; Gamma-ray astronomy ; Gamma-ray bursts ; Gravitation ; Gravitational waves ; High energy astrophysics ; Interferometers ; Near ultraviolet astronomy ; Observatories ; Radiation ; X-ray astronomy</subject><ispartof>The Astrophysical journal, 2021-02, Vol.907 (2), p.97</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>Copyright IOP Publishing Feb 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</citedby><cites>FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</cites><orcidid>0000-0002-1041-7542 ; 0000-0001-6276-6616 ; 0000-0002-1869-7817 ; 0000-0001-6842-2371 ; 0000-0002-9725-2524 ; 0000-0003-4650-4186 ; 0000-0001-6106-3046 ; 0000-0001-5624-2613 ; 0000-0001-9309-7873 ; 0000-0002-4744-9898 ; 0000-0001-6272-5507 ; 0000-0002-7465-0941 ; 0000-0002-2810-8764 ; 0000-0001-6620-8347 ; 0000-0002-8465-3353 ; 0000-0002-5042-1036 ; 0000-0002-2265-5003 ; 0000-0003-0729-1632 ; 0000-0002-8028-0991 ; 0000-0002-6745-4790 ; 0000-0002-6689-6271 ; 0000-0003-3828-2448 ; 0000-0002-3559-6305 ; 0000-0002-0001-7270 ; 0000-0003-3613-4409 ; 0000-0001-5347-7062 ; 0000-0002-7320-5862 ; 0000-0003-1673-970X ; 0000-0002-7517-326X ; 0000-0001-6278-1576 ; 0000-0001-7128-0802 ; 0000-0003-0121-0723 ; 0000-0002-5128-1899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abd2c3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abd2c3$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Klingler, N. J.</creatorcontrib><creatorcontrib>Lien, A.</creatorcontrib><creatorcontrib>Oates, S. R.</creatorcontrib><creatorcontrib>Kennea, J. A.</creatorcontrib><creatorcontrib>Evans, P. A.</creatorcontrib><creatorcontrib>Tohuvavohu, A.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Page, K. L.</creatorcontrib><creatorcontrib>Cenko, S. B.</creatorcontrib><creatorcontrib>Barthelmy, S. D.</creatorcontrib><creatorcontrib>Beardmore, A. P.</creatorcontrib><creatorcontrib>Bernardini, M. G.</creatorcontrib><creatorcontrib>Breeveld, A. A.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Burrows, D. N.</creatorcontrib><creatorcontrib>Campana, S.</creatorcontrib><creatorcontrib>Cusumano, G.</creatorcontrib><creatorcontrib>D'Aì, A.</creatorcontrib><creatorcontrib>D'Avanzo, P.</creatorcontrib><creatorcontrib>D'Elia, V.</creatorcontrib><creatorcontrib>Pasquale, M. de</creatorcontrib><creatorcontrib>Emery, S. W. K.</creatorcontrib><creatorcontrib>Garcia, J.</creatorcontrib><creatorcontrib>Giommi, P.</creatorcontrib><creatorcontrib>Gronwall, C.</creatorcontrib><creatorcontrib>Hartmann, D. H.</creatorcontrib><creatorcontrib>Krimm, H. A.</creatorcontrib><creatorcontrib>Kuin, N. P. M.</creatorcontrib><creatorcontrib>Malesani, D. B.</creatorcontrib><creatorcontrib>Marshall, F. E.</creatorcontrib><creatorcontrib>Melandri, A.</creatorcontrib><creatorcontrib>Nousek, J. A.</creatorcontrib><creatorcontrib>O'Brien, P. T.</creatorcontrib><creatorcontrib>Osborne, J. P.</creatorcontrib><creatorcontrib>Palmer, D. M.</creatorcontrib><creatorcontrib>Page, M. J.</creatorcontrib><creatorcontrib>Perri, M.</creatorcontrib><creatorcontrib>Racusin, J. L.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Sbarufatti, B.</creatorcontrib><creatorcontrib>Schlieder, J. E.</creatorcontrib><creatorcontrib>Siegel, M. H.</creatorcontrib><creatorcontrib>Tagliaferri, G.</creatorcontrib><creatorcontrib>Troja, E.</creatorcontrib><title>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E < 4.1 × 1051 erg (assuming typical GRB parameters).</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Gamma-ray astronomy</subject><subject>Gamma-ray bursts</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>High energy astrophysics</subject><subject>Interferometers</subject><subject>Near ultraviolet astronomy</subject><subject>Observatories</subject><subject>Radiation</subject><subject>X-ray astronomy</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp1kL1PwzAQxS0EEqWwMzBYgpFQf8VORqgordSKoYDYLCex25Q0DnZKxX-PoyBYYDrd3e_uPT0AzjG6oQkTIxzTJGI0FiOVFSSnB2DwMzoEA4QQizgVr8fgxPtN15I0HYB8uS9NCxe7qi336kNXul61azixVWX30a6B1sD5yxguCUKEsFxBVRewXWs42zZVmau2tLWHxjp4V9bKfcK7SuVvcGorDRfarbTzp-DIqMrrs-86BM-T-6fxNJo_PszGt_MoZ5y3UYGRpqLQGTcp0qJIMxbTDCuDOMI8JjgzKksx5azAqtCKUJVplghGEpQQk9MhuOz_Ns6-77Rv5cbuXB0kJem4WAjBA4V6KnfWe6eNbFy5Dc4lRrKLUna5yS432UcZTi76k1p5JevWhYeIYBRs4QSH9VW_Lm3zK6majUyRkESmQjaFCdj1H9i_ol_1B4kh</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Klingler, N. J.</creator><creator>Lien, A.</creator><creator>Oates, S. R.</creator><creator>Kennea, J. A.</creator><creator>Evans, P. A.</creator><creator>Tohuvavohu, A.</creator><creator>Zhang, B.</creator><creator>Page, K. L.</creator><creator>Cenko, S. B.</creator><creator>Barthelmy, S. D.</creator><creator>Beardmore, A. P.</creator><creator>Bernardini, M. G.</creator><creator>Breeveld, A. A.</creator><creator>Brown, P. J.</creator><creator>Burrows, D. N.</creator><creator>Campana, S.</creator><creator>Cusumano, G.</creator><creator>D'Aì, A.</creator><creator>D'Avanzo, P.</creator><creator>D'Elia, V.</creator><creator>Pasquale, M. de</creator><creator>Emery, S. W. K.</creator><creator>Garcia, J.</creator><creator>Giommi, P.</creator><creator>Gronwall, C.</creator><creator>Hartmann, D. H.</creator><creator>Krimm, H. A.</creator><creator>Kuin, N. P. M.</creator><creator>Malesani, D. B.</creator><creator>Marshall, F. E.</creator><creator>Melandri, A.</creator><creator>Nousek, J. A.</creator><creator>O'Brien, P. T.</creator><creator>Osborne, J. P.</creator><creator>Palmer, D. M.</creator><creator>Page, M. J.</creator><creator>Perri, M.</creator><creator>Racusin, J. L.</creator><creator>Sakamoto, T.</creator><creator>Sbarufatti, B.</creator><creator>Schlieder, J. E.</creator><creator>Siegel, M. H.</creator><creator>Tagliaferri, G.</creator><creator>Troja, E.</creator><general>The American Astronomical Society</general><general>AAS</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1041-7542</orcidid><orcidid>https://orcid.org/0000-0001-6276-6616</orcidid><orcidid>https://orcid.org/0000-0002-1869-7817</orcidid><orcidid>https://orcid.org/0000-0001-6842-2371</orcidid><orcidid>https://orcid.org/0000-0002-9725-2524</orcidid><orcidid>https://orcid.org/0000-0003-4650-4186</orcidid><orcidid>https://orcid.org/0000-0001-6106-3046</orcidid><orcidid>https://orcid.org/0000-0001-5624-2613</orcidid><orcidid>https://orcid.org/0000-0001-9309-7873</orcidid><orcidid>https://orcid.org/0000-0002-4744-9898</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0002-7465-0941</orcidid><orcidid>https://orcid.org/0000-0002-2810-8764</orcidid><orcidid>https://orcid.org/0000-0001-6620-8347</orcidid><orcidid>https://orcid.org/0000-0002-8465-3353</orcidid><orcidid>https://orcid.org/0000-0002-5042-1036</orcidid><orcidid>https://orcid.org/0000-0002-2265-5003</orcidid><orcidid>https://orcid.org/0000-0003-0729-1632</orcidid><orcidid>https://orcid.org/0000-0002-8028-0991</orcidid><orcidid>https://orcid.org/0000-0002-6745-4790</orcidid><orcidid>https://orcid.org/0000-0002-6689-6271</orcidid><orcidid>https://orcid.org/0000-0003-3828-2448</orcidid><orcidid>https://orcid.org/0000-0002-3559-6305</orcidid><orcidid>https://orcid.org/0000-0002-0001-7270</orcidid><orcidid>https://orcid.org/0000-0003-3613-4409</orcidid><orcidid>https://orcid.org/0000-0001-5347-7062</orcidid><orcidid>https://orcid.org/0000-0002-7320-5862</orcidid><orcidid>https://orcid.org/0000-0003-1673-970X</orcidid><orcidid>https://orcid.org/0000-0002-7517-326X</orcidid><orcidid>https://orcid.org/0000-0001-6278-1576</orcidid><orcidid>https://orcid.org/0000-0001-7128-0802</orcidid><orcidid>https://orcid.org/0000-0003-0121-0723</orcidid><orcidid>https://orcid.org/0000-0002-5128-1899</orcidid></search><sort><creationdate>20210201</creationdate><title>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</title><author>Klingler, N. J. ; Lien, A. ; Oates, S. R. ; Kennea, J. A. ; Evans, P. A. ; Tohuvavohu, A. ; Zhang, B. ; Page, K. L. ; Cenko, S. B. ; Barthelmy, S. D. ; Beardmore, A. P. ; Bernardini, M. G. ; Breeveld, A. A. ; Brown, P. J. ; Burrows, D. N. ; Campana, S. ; Cusumano, G. ; D'Aì, A. ; D'Avanzo, P. ; D'Elia, V. ; Pasquale, M. de ; Emery, S. W. K. ; Garcia, J. ; Giommi, P. ; Gronwall, C. ; Hartmann, D. H. ; Krimm, H. A. ; Kuin, N. P. M. ; Malesani, D. B. ; Marshall, F. E. ; Melandri, A. ; Nousek, J. A. ; O'Brien, P. T. ; Osborne, J. P. ; Palmer, D. M. ; Page, M. J. ; Perri, M. ; Racusin, J. L. ; Sakamoto, T. ; Sbarufatti, B. ; Schlieder, J. E. ; Siegel, M. H. ; Tagliaferri, G. ; Troja, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Gamma-ray astronomy</topic><topic>Gamma-ray bursts</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>High energy astrophysics</topic><topic>Interferometers</topic><topic>Near ultraviolet astronomy</topic><topic>Observatories</topic><topic>Radiation</topic><topic>X-ray astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klingler, N. J.</creatorcontrib><creatorcontrib>Lien, A.</creatorcontrib><creatorcontrib>Oates, S. R.</creatorcontrib><creatorcontrib>Kennea, J. A.</creatorcontrib><creatorcontrib>Evans, P. A.</creatorcontrib><creatorcontrib>Tohuvavohu, A.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Page, K. L.</creatorcontrib><creatorcontrib>Cenko, S. B.</creatorcontrib><creatorcontrib>Barthelmy, S. D.</creatorcontrib><creatorcontrib>Beardmore, A. P.</creatorcontrib><creatorcontrib>Bernardini, M. G.</creatorcontrib><creatorcontrib>Breeveld, A. A.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Burrows, D. N.</creatorcontrib><creatorcontrib>Campana, S.</creatorcontrib><creatorcontrib>Cusumano, G.</creatorcontrib><creatorcontrib>D'Aì, A.</creatorcontrib><creatorcontrib>D'Avanzo, P.</creatorcontrib><creatorcontrib>D'Elia, V.</creatorcontrib><creatorcontrib>Pasquale, M. de</creatorcontrib><creatorcontrib>Emery, S. W. K.</creatorcontrib><creatorcontrib>Garcia, J.</creatorcontrib><creatorcontrib>Giommi, P.</creatorcontrib><creatorcontrib>Gronwall, C.</creatorcontrib><creatorcontrib>Hartmann, D. H.</creatorcontrib><creatorcontrib>Krimm, H. A.</creatorcontrib><creatorcontrib>Kuin, N. P. M.</creatorcontrib><creatorcontrib>Malesani, D. B.</creatorcontrib><creatorcontrib>Marshall, F. E.</creatorcontrib><creatorcontrib>Melandri, A.</creatorcontrib><creatorcontrib>Nousek, J. A.</creatorcontrib><creatorcontrib>O'Brien, P. T.</creatorcontrib><creatorcontrib>Osborne, J. P.</creatorcontrib><creatorcontrib>Palmer, D. M.</creatorcontrib><creatorcontrib>Page, M. J.</creatorcontrib><creatorcontrib>Perri, M.</creatorcontrib><creatorcontrib>Racusin, J. L.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Sbarufatti, B.</creatorcontrib><creatorcontrib>Schlieder, J. E.</creatorcontrib><creatorcontrib>Siegel, M. H.</creatorcontrib><creatorcontrib>Tagliaferri, G.</creatorcontrib><creatorcontrib>Troja, E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klingler, N. J.</au><au>Lien, A.</au><au>Oates, S. R.</au><au>Kennea, J. A.</au><au>Evans, P. A.</au><au>Tohuvavohu, A.</au><au>Zhang, B.</au><au>Page, K. L.</au><au>Cenko, S. B.</au><au>Barthelmy, S. D.</au><au>Beardmore, A. P.</au><au>Bernardini, M. G.</au><au>Breeveld, A. A.</au><au>Brown, P. J.</au><au>Burrows, D. N.</au><au>Campana, S.</au><au>Cusumano, G.</au><au>D'Aì, A.</au><au>D'Avanzo, P.</au><au>D'Elia, V.</au><au>Pasquale, M. de</au><au>Emery, S. W. K.</au><au>Garcia, J.</au><au>Giommi, P.</au><au>Gronwall, C.</au><au>Hartmann, D. H.</au><au>Krimm, H. A.</au><au>Kuin, N. P. M.</au><au>Malesani, D. B.</au><au>Marshall, F. E.</au><au>Melandri, A.</au><au>Nousek, J. A.</au><au>O'Brien, P. T.</au><au>Osborne, J. P.</au><au>Palmer, D. M.</au><au>Page, M. J.</au><au>Perri, M.</au><au>Racusin, J. L.</au><au>Sakamoto, T.</au><au>Sbarufatti, B.</au><au>Schlieder, J. E.</au><au>Siegel, M. H.</au><au>Tagliaferri, G.</au><au>Troja, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>907</volume><issue>2</issue><spage>97</spage><pages>97-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E < 4.1 × 1051 erg (assuming typical GRB parameters).</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abd2c3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1041-7542</orcidid><orcidid>https://orcid.org/0000-0001-6276-6616</orcidid><orcidid>https://orcid.org/0000-0002-1869-7817</orcidid><orcidid>https://orcid.org/0000-0001-6842-2371</orcidid><orcidid>https://orcid.org/0000-0002-9725-2524</orcidid><orcidid>https://orcid.org/0000-0003-4650-4186</orcidid><orcidid>https://orcid.org/0000-0001-6106-3046</orcidid><orcidid>https://orcid.org/0000-0001-5624-2613</orcidid><orcidid>https://orcid.org/0000-0001-9309-7873</orcidid><orcidid>https://orcid.org/0000-0002-4744-9898</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0002-7465-0941</orcidid><orcidid>https://orcid.org/0000-0002-2810-8764</orcidid><orcidid>https://orcid.org/0000-0001-6620-8347</orcidid><orcidid>https://orcid.org/0000-0002-8465-3353</orcidid><orcidid>https://orcid.org/0000-0002-5042-1036</orcidid><orcidid>https://orcid.org/0000-0002-2265-5003</orcidid><orcidid>https://orcid.org/0000-0003-0729-1632</orcidid><orcidid>https://orcid.org/0000-0002-8028-0991</orcidid><orcidid>https://orcid.org/0000-0002-6745-4790</orcidid><orcidid>https://orcid.org/0000-0002-6689-6271</orcidid><orcidid>https://orcid.org/0000-0003-3828-2448</orcidid><orcidid>https://orcid.org/0000-0002-3559-6305</orcidid><orcidid>https://orcid.org/0000-0002-0001-7270</orcidid><orcidid>https://orcid.org/0000-0003-3613-4409</orcidid><orcidid>https://orcid.org/0000-0001-5347-7062</orcidid><orcidid>https://orcid.org/0000-0002-7320-5862</orcidid><orcidid>https://orcid.org/0000-0003-1673-970X</orcidid><orcidid>https://orcid.org/0000-0002-7517-326X</orcidid><orcidid>https://orcid.org/0000-0001-6278-1576</orcidid><orcidid>https://orcid.org/0000-0001-7128-0802</orcidid><orcidid>https://orcid.org/0000-0003-0121-0723</orcidid><orcidid>https://orcid.org/0000-0002-5128-1899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-02, Vol.907 (2), p.97 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_abd2c3 |
source | IOP Publishing Free Content |
subjects | Astronomy Astrophysics Black holes Gamma-ray astronomy Gamma-ray bursts Gravitation Gravitational waves High energy astrophysics Interferometers Near ultraviolet astronomy Observatories Radiation X-ray astronomy |
title | Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swift%20Multiwavelength%20Follow-up%20of%20LVC%20S200224ca%20and%20the%20Implications%20for%20Binary%20Black%20Hole%20Mergers&rft.jtitle=The%20Astrophysical%20journal&rft.au=Klingler,%20N.%20J.&rft.date=2021-02-01&rft.volume=907&rft.issue=2&rft.spage=97&rft.pages=97-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abd2c3&rft_dat=%3Cproquest_O3W%3E2487457776%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487457776&rft_id=info:pmid/&rfr_iscdi=true |