Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers

On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-02, Vol.907 (2), p.97
Hauptverfasser: Klingler, N. J., Lien, A., Oates, S. R., Kennea, J. A., Evans, P. A., Tohuvavohu, A., Zhang, B., Page, K. L., Cenko, S. B., Barthelmy, S. D., Beardmore, A. P., Bernardini, M. G., Breeveld, A. A., Brown, P. J., Burrows, D. N., Campana, S., Cusumano, G., D'Aì, A., D'Avanzo, P., D'Elia, V., Pasquale, M. de, Emery, S. W. K., Garcia, J., Giommi, P., Gronwall, C., Hartmann, D. H., Krimm, H. A., Kuin, N. P. M., Malesani, D. B., Marshall, F. E., Melandri, A., Nousek, J. A., O'Brien, P. T., Osborne, J. P., Palmer, D. M., Page, M. J., Perri, M., Racusin, J. L., Sakamoto, T., Sbarufatti, B., Schlieder, J. E., Siegel, M. H., Tagliaferri, G., Troja, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 97
container_title The Astrophysical journal
container_volume 907
creator Klingler, N. J.
Lien, A.
Oates, S. R.
Kennea, J. A.
Evans, P. A.
Tohuvavohu, A.
Zhang, B.
Page, K. L.
Cenko, S. B.
Barthelmy, S. D.
Beardmore, A. P.
Bernardini, M. G.
Breeveld, A. A.
Brown, P. J.
Burrows, D. N.
Campana, S.
Cusumano, G.
D'Aì, A.
D'Avanzo, P.
D'Elia, V.
Pasquale, M. de
Emery, S. W. K.
Garcia, J.
Giommi, P.
Gronwall, C.
Hartmann, D. H.
Krimm, H. A.
Kuin, N. P. M.
Malesani, D. B.
Marshall, F. E.
Melandri, A.
Nousek, J. A.
O'Brien, P. T.
Osborne, J. P.
Palmer, D. M.
Page, M. J.
Perri, M.
Racusin, J. L.
Sakamoto, T.
Sbarufatti, B.
Schlieder, J. E.
Siegel, M. H.
Tagliaferri, G.
Troja, E.
description On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E < 4.1 × 1051 erg (assuming typical GRB parameters).
doi_str_mv 10.3847/1538-4357/abd2c3
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abd2c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487457776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMzBYgpFQf8VORqgordSKoYDYLCex25Q0DnZKxX-PoyBYYDrd3e_uPT0AzjG6oQkTIxzTJGI0FiOVFSSnB2DwMzoEA4QQizgVr8fgxPtN15I0HYB8uS9NCxe7qi336kNXul61azixVWX30a6B1sD5yxguCUKEsFxBVRewXWs42zZVmau2tLWHxjp4V9bKfcK7SuVvcGorDRfarbTzp-DIqMrrs-86BM-T-6fxNJo_PszGt_MoZ5y3UYGRpqLQGTcp0qJIMxbTDCuDOMI8JjgzKksx5azAqtCKUJVplghGEpQQk9MhuOz_Ns6-77Rv5cbuXB0kJem4WAjBA4V6KnfWe6eNbFy5Dc4lRrKLUna5yS432UcZTi76k1p5JevWhYeIYBRs4QSH9VW_Lm3zK6majUyRkESmQjaFCdj1H9i_ol_1B4kh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487457776</pqid></control><display><type>article</type><title>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</title><source>IOP Publishing Free Content</source><creator>Klingler, N. J. ; Lien, A. ; Oates, S. R. ; Kennea, J. A. ; Evans, P. A. ; Tohuvavohu, A. ; Zhang, B. ; Page, K. L. ; Cenko, S. B. ; Barthelmy, S. D. ; Beardmore, A. P. ; Bernardini, M. G. ; Breeveld, A. A. ; Brown, P. J. ; Burrows, D. N. ; Campana, S. ; Cusumano, G. ; D'Aì, A. ; D'Avanzo, P. ; D'Elia, V. ; Pasquale, M. de ; Emery, S. W. K. ; Garcia, J. ; Giommi, P. ; Gronwall, C. ; Hartmann, D. H. ; Krimm, H. A. ; Kuin, N. P. M. ; Malesani, D. B. ; Marshall, F. E. ; Melandri, A. ; Nousek, J. A. ; O'Brien, P. T. ; Osborne, J. P. ; Palmer, D. M. ; Page, M. J. ; Perri, M. ; Racusin, J. L. ; Sakamoto, T. ; Sbarufatti, B. ; Schlieder, J. E. ; Siegel, M. H. ; Tagliaferri, G. ; Troja, E.</creator><creatorcontrib>Klingler, N. J. ; Lien, A. ; Oates, S. R. ; Kennea, J. A. ; Evans, P. A. ; Tohuvavohu, A. ; Zhang, B. ; Page, K. L. ; Cenko, S. B. ; Barthelmy, S. D. ; Beardmore, A. P. ; Bernardini, M. G. ; Breeveld, A. A. ; Brown, P. J. ; Burrows, D. N. ; Campana, S. ; Cusumano, G. ; D'Aì, A. ; D'Avanzo, P. ; D'Elia, V. ; Pasquale, M. de ; Emery, S. W. K. ; Garcia, J. ; Giommi, P. ; Gronwall, C. ; Hartmann, D. H. ; Krimm, H. A. ; Kuin, N. P. M. ; Malesani, D. B. ; Marshall, F. E. ; Melandri, A. ; Nousek, J. A. ; O'Brien, P. T. ; Osborne, J. P. ; Palmer, D. M. ; Page, M. J. ; Perri, M. ; Racusin, J. L. ; Sakamoto, T. ; Sbarufatti, B. ; Schlieder, J. E. ; Siegel, M. H. ; Tagliaferri, G. ; Troja, E.</creatorcontrib><description>On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E &lt; 4.1 × 1051 erg (assuming typical GRB parameters).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abd2c3</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Astronomy ; Astrophysics ; Black holes ; Gamma-ray astronomy ; Gamma-ray bursts ; Gravitation ; Gravitational waves ; High energy astrophysics ; Interferometers ; Near ultraviolet astronomy ; Observatories ; Radiation ; X-ray astronomy</subject><ispartof>The Astrophysical journal, 2021-02, Vol.907 (2), p.97</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>Copyright IOP Publishing Feb 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</citedby><cites>FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</cites><orcidid>0000-0002-1041-7542 ; 0000-0001-6276-6616 ; 0000-0002-1869-7817 ; 0000-0001-6842-2371 ; 0000-0002-9725-2524 ; 0000-0003-4650-4186 ; 0000-0001-6106-3046 ; 0000-0001-5624-2613 ; 0000-0001-9309-7873 ; 0000-0002-4744-9898 ; 0000-0001-6272-5507 ; 0000-0002-7465-0941 ; 0000-0002-2810-8764 ; 0000-0001-6620-8347 ; 0000-0002-8465-3353 ; 0000-0002-5042-1036 ; 0000-0002-2265-5003 ; 0000-0003-0729-1632 ; 0000-0002-8028-0991 ; 0000-0002-6745-4790 ; 0000-0002-6689-6271 ; 0000-0003-3828-2448 ; 0000-0002-3559-6305 ; 0000-0002-0001-7270 ; 0000-0003-3613-4409 ; 0000-0001-5347-7062 ; 0000-0002-7320-5862 ; 0000-0003-1673-970X ; 0000-0002-7517-326X ; 0000-0001-6278-1576 ; 0000-0001-7128-0802 ; 0000-0003-0121-0723 ; 0000-0002-5128-1899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abd2c3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abd2c3$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Klingler, N. J.</creatorcontrib><creatorcontrib>Lien, A.</creatorcontrib><creatorcontrib>Oates, S. R.</creatorcontrib><creatorcontrib>Kennea, J. A.</creatorcontrib><creatorcontrib>Evans, P. A.</creatorcontrib><creatorcontrib>Tohuvavohu, A.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Page, K. L.</creatorcontrib><creatorcontrib>Cenko, S. B.</creatorcontrib><creatorcontrib>Barthelmy, S. D.</creatorcontrib><creatorcontrib>Beardmore, A. P.</creatorcontrib><creatorcontrib>Bernardini, M. G.</creatorcontrib><creatorcontrib>Breeveld, A. A.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Burrows, D. N.</creatorcontrib><creatorcontrib>Campana, S.</creatorcontrib><creatorcontrib>Cusumano, G.</creatorcontrib><creatorcontrib>D'Aì, A.</creatorcontrib><creatorcontrib>D'Avanzo, P.</creatorcontrib><creatorcontrib>D'Elia, V.</creatorcontrib><creatorcontrib>Pasquale, M. de</creatorcontrib><creatorcontrib>Emery, S. W. K.</creatorcontrib><creatorcontrib>Garcia, J.</creatorcontrib><creatorcontrib>Giommi, P.</creatorcontrib><creatorcontrib>Gronwall, C.</creatorcontrib><creatorcontrib>Hartmann, D. H.</creatorcontrib><creatorcontrib>Krimm, H. A.</creatorcontrib><creatorcontrib>Kuin, N. P. M.</creatorcontrib><creatorcontrib>Malesani, D. B.</creatorcontrib><creatorcontrib>Marshall, F. E.</creatorcontrib><creatorcontrib>Melandri, A.</creatorcontrib><creatorcontrib>Nousek, J. A.</creatorcontrib><creatorcontrib>O'Brien, P. T.</creatorcontrib><creatorcontrib>Osborne, J. P.</creatorcontrib><creatorcontrib>Palmer, D. M.</creatorcontrib><creatorcontrib>Page, M. J.</creatorcontrib><creatorcontrib>Perri, M.</creatorcontrib><creatorcontrib>Racusin, J. L.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Sbarufatti, B.</creatorcontrib><creatorcontrib>Schlieder, J. E.</creatorcontrib><creatorcontrib>Siegel, M. H.</creatorcontrib><creatorcontrib>Tagliaferri, G.</creatorcontrib><creatorcontrib>Troja, E.</creatorcontrib><title>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E &lt; 4.1 × 1051 erg (assuming typical GRB parameters).</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Gamma-ray astronomy</subject><subject>Gamma-ray bursts</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>High energy astrophysics</subject><subject>Interferometers</subject><subject>Near ultraviolet astronomy</subject><subject>Observatories</subject><subject>Radiation</subject><subject>X-ray astronomy</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp1kL1PwzAQxS0EEqWwMzBYgpFQf8VORqgordSKoYDYLCex25Q0DnZKxX-PoyBYYDrd3e_uPT0AzjG6oQkTIxzTJGI0FiOVFSSnB2DwMzoEA4QQizgVr8fgxPtN15I0HYB8uS9NCxe7qi336kNXul61azixVWX30a6B1sD5yxguCUKEsFxBVRewXWs42zZVmau2tLWHxjp4V9bKfcK7SuVvcGorDRfarbTzp-DIqMrrs-86BM-T-6fxNJo_PszGt_MoZ5y3UYGRpqLQGTcp0qJIMxbTDCuDOMI8JjgzKksx5azAqtCKUJVplghGEpQQk9MhuOz_Ns6-77Rv5cbuXB0kJem4WAjBA4V6KnfWe6eNbFy5Dc4lRrKLUna5yS432UcZTi76k1p5JevWhYeIYBRs4QSH9VW_Lm3zK6majUyRkESmQjaFCdj1H9i_ol_1B4kh</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Klingler, N. J.</creator><creator>Lien, A.</creator><creator>Oates, S. R.</creator><creator>Kennea, J. A.</creator><creator>Evans, P. A.</creator><creator>Tohuvavohu, A.</creator><creator>Zhang, B.</creator><creator>Page, K. L.</creator><creator>Cenko, S. B.</creator><creator>Barthelmy, S. D.</creator><creator>Beardmore, A. P.</creator><creator>Bernardini, M. G.</creator><creator>Breeveld, A. A.</creator><creator>Brown, P. J.</creator><creator>Burrows, D. N.</creator><creator>Campana, S.</creator><creator>Cusumano, G.</creator><creator>D'Aì, A.</creator><creator>D'Avanzo, P.</creator><creator>D'Elia, V.</creator><creator>Pasquale, M. de</creator><creator>Emery, S. W. K.</creator><creator>Garcia, J.</creator><creator>Giommi, P.</creator><creator>Gronwall, C.</creator><creator>Hartmann, D. H.</creator><creator>Krimm, H. A.</creator><creator>Kuin, N. P. M.</creator><creator>Malesani, D. B.</creator><creator>Marshall, F. E.</creator><creator>Melandri, A.</creator><creator>Nousek, J. A.</creator><creator>O'Brien, P. T.</creator><creator>Osborne, J. P.</creator><creator>Palmer, D. M.</creator><creator>Page, M. J.</creator><creator>Perri, M.</creator><creator>Racusin, J. L.</creator><creator>Sakamoto, T.</creator><creator>Sbarufatti, B.</creator><creator>Schlieder, J. E.</creator><creator>Siegel, M. H.</creator><creator>Tagliaferri, G.</creator><creator>Troja, E.</creator><general>The American Astronomical Society</general><general>AAS</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1041-7542</orcidid><orcidid>https://orcid.org/0000-0001-6276-6616</orcidid><orcidid>https://orcid.org/0000-0002-1869-7817</orcidid><orcidid>https://orcid.org/0000-0001-6842-2371</orcidid><orcidid>https://orcid.org/0000-0002-9725-2524</orcidid><orcidid>https://orcid.org/0000-0003-4650-4186</orcidid><orcidid>https://orcid.org/0000-0001-6106-3046</orcidid><orcidid>https://orcid.org/0000-0001-5624-2613</orcidid><orcidid>https://orcid.org/0000-0001-9309-7873</orcidid><orcidid>https://orcid.org/0000-0002-4744-9898</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0002-7465-0941</orcidid><orcidid>https://orcid.org/0000-0002-2810-8764</orcidid><orcidid>https://orcid.org/0000-0001-6620-8347</orcidid><orcidid>https://orcid.org/0000-0002-8465-3353</orcidid><orcidid>https://orcid.org/0000-0002-5042-1036</orcidid><orcidid>https://orcid.org/0000-0002-2265-5003</orcidid><orcidid>https://orcid.org/0000-0003-0729-1632</orcidid><orcidid>https://orcid.org/0000-0002-8028-0991</orcidid><orcidid>https://orcid.org/0000-0002-6745-4790</orcidid><orcidid>https://orcid.org/0000-0002-6689-6271</orcidid><orcidid>https://orcid.org/0000-0003-3828-2448</orcidid><orcidid>https://orcid.org/0000-0002-3559-6305</orcidid><orcidid>https://orcid.org/0000-0002-0001-7270</orcidid><orcidid>https://orcid.org/0000-0003-3613-4409</orcidid><orcidid>https://orcid.org/0000-0001-5347-7062</orcidid><orcidid>https://orcid.org/0000-0002-7320-5862</orcidid><orcidid>https://orcid.org/0000-0003-1673-970X</orcidid><orcidid>https://orcid.org/0000-0002-7517-326X</orcidid><orcidid>https://orcid.org/0000-0001-6278-1576</orcidid><orcidid>https://orcid.org/0000-0001-7128-0802</orcidid><orcidid>https://orcid.org/0000-0003-0121-0723</orcidid><orcidid>https://orcid.org/0000-0002-5128-1899</orcidid></search><sort><creationdate>20210201</creationdate><title>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</title><author>Klingler, N. J. ; Lien, A. ; Oates, S. R. ; Kennea, J. A. ; Evans, P. A. ; Tohuvavohu, A. ; Zhang, B. ; Page, K. L. ; Cenko, S. B. ; Barthelmy, S. D. ; Beardmore, A. P. ; Bernardini, M. G. ; Breeveld, A. A. ; Brown, P. J. ; Burrows, D. N. ; Campana, S. ; Cusumano, G. ; D'Aì, A. ; D'Avanzo, P. ; D'Elia, V. ; Pasquale, M. de ; Emery, S. W. K. ; Garcia, J. ; Giommi, P. ; Gronwall, C. ; Hartmann, D. H. ; Krimm, H. A. ; Kuin, N. P. M. ; Malesani, D. B. ; Marshall, F. E. ; Melandri, A. ; Nousek, J. A. ; O'Brien, P. T. ; Osborne, J. P. ; Palmer, D. M. ; Page, M. J. ; Perri, M. ; Racusin, J. L. ; Sakamoto, T. ; Sbarufatti, B. ; Schlieder, J. E. ; Siegel, M. H. ; Tagliaferri, G. ; Troja, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-d10e37deb6f90e7d9b453b1af06016521bfab91364d1adea23abe487428082fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Gamma-ray astronomy</topic><topic>Gamma-ray bursts</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>High energy astrophysics</topic><topic>Interferometers</topic><topic>Near ultraviolet astronomy</topic><topic>Observatories</topic><topic>Radiation</topic><topic>X-ray astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klingler, N. J.</creatorcontrib><creatorcontrib>Lien, A.</creatorcontrib><creatorcontrib>Oates, S. R.</creatorcontrib><creatorcontrib>Kennea, J. A.</creatorcontrib><creatorcontrib>Evans, P. A.</creatorcontrib><creatorcontrib>Tohuvavohu, A.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Page, K. L.</creatorcontrib><creatorcontrib>Cenko, S. B.</creatorcontrib><creatorcontrib>Barthelmy, S. D.</creatorcontrib><creatorcontrib>Beardmore, A. P.</creatorcontrib><creatorcontrib>Bernardini, M. G.</creatorcontrib><creatorcontrib>Breeveld, A. A.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Burrows, D. N.</creatorcontrib><creatorcontrib>Campana, S.</creatorcontrib><creatorcontrib>Cusumano, G.</creatorcontrib><creatorcontrib>D'Aì, A.</creatorcontrib><creatorcontrib>D'Avanzo, P.</creatorcontrib><creatorcontrib>D'Elia, V.</creatorcontrib><creatorcontrib>Pasquale, M. de</creatorcontrib><creatorcontrib>Emery, S. W. K.</creatorcontrib><creatorcontrib>Garcia, J.</creatorcontrib><creatorcontrib>Giommi, P.</creatorcontrib><creatorcontrib>Gronwall, C.</creatorcontrib><creatorcontrib>Hartmann, D. H.</creatorcontrib><creatorcontrib>Krimm, H. A.</creatorcontrib><creatorcontrib>Kuin, N. P. M.</creatorcontrib><creatorcontrib>Malesani, D. B.</creatorcontrib><creatorcontrib>Marshall, F. E.</creatorcontrib><creatorcontrib>Melandri, A.</creatorcontrib><creatorcontrib>Nousek, J. A.</creatorcontrib><creatorcontrib>O'Brien, P. T.</creatorcontrib><creatorcontrib>Osborne, J. P.</creatorcontrib><creatorcontrib>Palmer, D. M.</creatorcontrib><creatorcontrib>Page, M. J.</creatorcontrib><creatorcontrib>Perri, M.</creatorcontrib><creatorcontrib>Racusin, J. L.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Sbarufatti, B.</creatorcontrib><creatorcontrib>Schlieder, J. E.</creatorcontrib><creatorcontrib>Siegel, M. H.</creatorcontrib><creatorcontrib>Tagliaferri, G.</creatorcontrib><creatorcontrib>Troja, E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klingler, N. J.</au><au>Lien, A.</au><au>Oates, S. R.</au><au>Kennea, J. A.</au><au>Evans, P. A.</au><au>Tohuvavohu, A.</au><au>Zhang, B.</au><au>Page, K. L.</au><au>Cenko, S. B.</au><au>Barthelmy, S. D.</au><au>Beardmore, A. P.</au><au>Bernardini, M. G.</au><au>Breeveld, A. A.</au><au>Brown, P. J.</au><au>Burrows, D. N.</au><au>Campana, S.</au><au>Cusumano, G.</au><au>D'Aì, A.</au><au>D'Avanzo, P.</au><au>D'Elia, V.</au><au>Pasquale, M. de</au><au>Emery, S. W. K.</au><au>Garcia, J.</au><au>Giommi, P.</au><au>Gronwall, C.</au><au>Hartmann, D. H.</au><au>Krimm, H. A.</au><au>Kuin, N. P. M.</au><au>Malesani, D. B.</au><au>Marshall, F. E.</au><au>Melandri, A.</au><au>Nousek, J. A.</au><au>O'Brien, P. T.</au><au>Osborne, J. P.</au><au>Palmer, D. M.</au><au>Page, M. J.</au><au>Perri, M.</au><au>Racusin, J. L.</au><au>Sakamoto, T.</au><au>Sbarufatti, B.</au><au>Schlieder, J. E.</au><au>Siegel, M. H.</au><au>Tagliaferri, G.</au><au>Troja, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>907</volume><issue>2</issue><spage>97</spage><pages>97-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E &lt; 4.1 × 1051 erg (assuming typical GRB parameters).</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abd2c3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1041-7542</orcidid><orcidid>https://orcid.org/0000-0001-6276-6616</orcidid><orcidid>https://orcid.org/0000-0002-1869-7817</orcidid><orcidid>https://orcid.org/0000-0001-6842-2371</orcidid><orcidid>https://orcid.org/0000-0002-9725-2524</orcidid><orcidid>https://orcid.org/0000-0003-4650-4186</orcidid><orcidid>https://orcid.org/0000-0001-6106-3046</orcidid><orcidid>https://orcid.org/0000-0001-5624-2613</orcidid><orcidid>https://orcid.org/0000-0001-9309-7873</orcidid><orcidid>https://orcid.org/0000-0002-4744-9898</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0002-7465-0941</orcidid><orcidid>https://orcid.org/0000-0002-2810-8764</orcidid><orcidid>https://orcid.org/0000-0001-6620-8347</orcidid><orcidid>https://orcid.org/0000-0002-8465-3353</orcidid><orcidid>https://orcid.org/0000-0002-5042-1036</orcidid><orcidid>https://orcid.org/0000-0002-2265-5003</orcidid><orcidid>https://orcid.org/0000-0003-0729-1632</orcidid><orcidid>https://orcid.org/0000-0002-8028-0991</orcidid><orcidid>https://orcid.org/0000-0002-6745-4790</orcidid><orcidid>https://orcid.org/0000-0002-6689-6271</orcidid><orcidid>https://orcid.org/0000-0003-3828-2448</orcidid><orcidid>https://orcid.org/0000-0002-3559-6305</orcidid><orcidid>https://orcid.org/0000-0002-0001-7270</orcidid><orcidid>https://orcid.org/0000-0003-3613-4409</orcidid><orcidid>https://orcid.org/0000-0001-5347-7062</orcidid><orcidid>https://orcid.org/0000-0002-7320-5862</orcidid><orcidid>https://orcid.org/0000-0003-1673-970X</orcidid><orcidid>https://orcid.org/0000-0002-7517-326X</orcidid><orcidid>https://orcid.org/0000-0001-6278-1576</orcidid><orcidid>https://orcid.org/0000-0001-7128-0802</orcidid><orcidid>https://orcid.org/0000-0003-0121-0723</orcidid><orcidid>https://orcid.org/0000-0002-5128-1899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-02, Vol.907 (2), p.97
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_abd2c3
source IOP Publishing Free Content
subjects Astronomy
Astrophysics
Black holes
Gamma-ray astronomy
Gamma-ray bursts
Gravitation
Gravitational waves
High energy astrophysics
Interferometers
Near ultraviolet astronomy
Observatories
Radiation
X-ray astronomy
title Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swift%20Multiwavelength%20Follow-up%20of%20LVC%20S200224ca%20and%20the%20Implications%20for%20Binary%20Black%20Hole%20Mergers&rft.jtitle=The%20Astrophysical%20journal&rft.au=Klingler,%20N.%20J.&rft.date=2021-02-01&rft.volume=907&rft.issue=2&rft.spage=97&rft.pages=97-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abd2c3&rft_dat=%3Cproquest_O3W%3E2487457776%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487457776&rft_id=info:pmid/&rfr_iscdi=true