A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations

We propose a turbulence-driven solar wind model for a fast solar wind flow in an open coronal hole where the solar wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with Parker Solar Probe measurements of the fast solar wind flow and find good agreeme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-10, Vol.901 (2), p.102
Hauptverfasser: Adhikari, L., Zank, G. P., Zhao, L.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 102
container_title The Astrophysical journal
container_volume 901
creator Adhikari, L.
Zank, G. P.
Zhao, L.-L.
description We propose a turbulence-driven solar wind model for a fast solar wind flow in an open coronal hole where the solar wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with Parker Solar Probe measurements of the fast solar wind flow and find good agreement between them. We find that (1) the majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about K within a few solar radii, which leads in turn to the acceleration of the solar wind; (2) the heating rate due to quasi-2D turbulence near the coronal base is larger than that due to nearly incompressible/slab turbulence; (3) the quasi-2D energy in forward-propagating modes decreases with increasing distance, while the nearly incompressible/slab energy in forward-propagating modes increases, reaching a peak value at ∼11.7 before decreasing with increasing heliocentric distance; (4) the correlation length increases with increasing distance from the coronal base; and (5) the variance of the density fluctuations decreases as a function of heliocentric distance.
doi_str_mv 10.3847/1538-4357/abb132
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abb132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447020546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-4e92dd96d7db99da12999e4de9ab6c636c87c1019544bc8ac489c9c9bd16ee453</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWr17XPCiYOxustlkj6W0Vqg00Irelv0qpMZsnU0E_70JKXqSOQxv5r3HzEPompKHJGfZhKZJHrEkzSZKa5rEJ2j0OzpFI0IIi3iSvZ2jixD2PYyFGCE_xRtfKcAzD75WFV76ymFVW7xQoTnuXssOb1vQbeVq4_Czt64aSCWEJvKgywYXCt4dHCUFeO3wbbEp7vBaBwdfqil9HS7R2U5VwV0d-xi9LObb2TJarR-fZtNVZBjlTcSciK0V3GZWC2EV7Y4VjlknlOaGJ9zkmaGEipQxbXJlWC5MV9pS7hxLkzG6GXwP4D9bFxq59y10DwYZM5aRmKSMdywysAz4EMDt5AHKDwXfkhLZxyr7DGWfoRxi7ST3g6T0hz_Pf-k_lG94Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447020546</pqid></control><display><type>article</type><title>A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations</title><source>IOP Publishing Free Content</source><creator>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L.</creator><creatorcontrib>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L.</creatorcontrib><description>We propose a turbulence-driven solar wind model for a fast solar wind flow in an open coronal hole where the solar wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with Parker Solar Probe measurements of the fast solar wind flow and find good agreement between them. We find that (1) the majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about K within a few solar radii, which leads in turn to the acceleration of the solar wind; (2) the heating rate due to quasi-2D turbulence near the coronal base is larger than that due to nearly incompressible/slab turbulence; (3) the quasi-2D energy in forward-propagating modes decreases with increasing distance, while the nearly incompressible/slab energy in forward-propagating modes increases, reaching a peak value at ∼11.7 before decreasing with increasing heliocentric distance; (4) the correlation length increases with increasing distance from the coronal base; and (5) the variance of the density fluctuations decreases as a function of heliocentric distance.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb132</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Computational fluid dynamics ; Coronal heating ; Coronal holes ; Heating rate ; Interplanetary turbulence ; Magnetic fields ; Propagation modes ; Solar corona ; Solar magnetic field ; Solar probes ; Solar wind ; Solar wind flow ; Solar wind models ; Solar wind turbulence ; The Sun ; Turbulence models ; Wind flow</subject><ispartof>The Astrophysical journal, 2020-10, Vol.901 (2), p.102</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-4e92dd96d7db99da12999e4de9ab6c636c87c1019544bc8ac489c9c9bd16ee453</citedby><cites>FETCH-LOGICAL-c416t-4e92dd96d7db99da12999e4de9ab6c636c87c1019544bc8ac489c9c9bd16ee453</cites><orcidid>0000-0003-1549-5256 ; 0000-0002-4299-0490 ; 0000-0002-4642-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb132/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb132$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><title>A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We propose a turbulence-driven solar wind model for a fast solar wind flow in an open coronal hole where the solar wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with Parker Solar Probe measurements of the fast solar wind flow and find good agreement between them. We find that (1) the majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about K within a few solar radii, which leads in turn to the acceleration of the solar wind; (2) the heating rate due to quasi-2D turbulence near the coronal base is larger than that due to nearly incompressible/slab turbulence; (3) the quasi-2D energy in forward-propagating modes decreases with increasing distance, while the nearly incompressible/slab energy in forward-propagating modes increases, reaching a peak value at ∼11.7 before decreasing with increasing heliocentric distance; (4) the correlation length increases with increasing distance from the coronal base; and (5) the variance of the density fluctuations decreases as a function of heliocentric distance.</description><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Coronal heating</subject><subject>Coronal holes</subject><subject>Heating rate</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Propagation modes</subject><subject>Solar corona</subject><subject>Solar magnetic field</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind flow</subject><subject>Solar wind models</subject><subject>Solar wind turbulence</subject><subject>The Sun</subject><subject>Turbulence models</subject><subject>Wind flow</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUTBWr17XPCiYOxustlkj6W0Vqg00Irelv0qpMZsnU0E_70JKXqSOQxv5r3HzEPompKHJGfZhKZJHrEkzSZKa5rEJ2j0OzpFI0IIi3iSvZ2jixD2PYyFGCE_xRtfKcAzD75WFV76ymFVW7xQoTnuXssOb1vQbeVq4_Czt64aSCWEJvKgywYXCt4dHCUFeO3wbbEp7vBaBwdfqil9HS7R2U5VwV0d-xi9LObb2TJarR-fZtNVZBjlTcSciK0V3GZWC2EV7Y4VjlknlOaGJ9zkmaGEipQxbXJlWC5MV9pS7hxLkzG6GXwP4D9bFxq59y10DwYZM5aRmKSMdywysAz4EMDt5AHKDwXfkhLZxyr7DGWfoRxi7ST3g6T0hz_Pf-k_lG94Rw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Adhikari, L.</creator><creator>Zank, G. P.</creator><creator>Zhao, L.-L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid></search><sort><creationdate>20201001</creationdate><title>A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations</title><author>Adhikari, L. ; Zank, G. P. ; Zhao, L.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-4e92dd96d7db99da12999e4de9ab6c636c87c1019544bc8ac489c9c9bd16ee453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Coronal heating</topic><topic>Coronal holes</topic><topic>Heating rate</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Propagation modes</topic><topic>Solar corona</topic><topic>Solar magnetic field</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind flow</topic><topic>Solar wind models</topic><topic>Solar wind turbulence</topic><topic>The Sun</topic><topic>Turbulence models</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adhikari, L.</au><au>Zank, G. P.</au><au>Zhao, L.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>901</volume><issue>2</issue><spage>102</spage><pages>102-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We propose a turbulence-driven solar wind model for a fast solar wind flow in an open coronal hole where the solar wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with Parker Solar Probe measurements of the fast solar wind flow and find good agreement between them. We find that (1) the majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about K within a few solar radii, which leads in turn to the acceleration of the solar wind; (2) the heating rate due to quasi-2D turbulence near the coronal base is larger than that due to nearly incompressible/slab turbulence; (3) the quasi-2D energy in forward-propagating modes decreases with increasing distance, while the nearly incompressible/slab energy in forward-propagating modes increases, reaching a peak value at ∼11.7 before decreasing with increasing heliocentric distance; (4) the correlation length increases with increasing distance from the coronal base; and (5) the variance of the density fluctuations decreases as a function of heliocentric distance.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb132</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-10, Vol.901 (2), p.102
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_abb132
source IOP Publishing Free Content
subjects Astrophysics
Computational fluid dynamics
Coronal heating
Coronal holes
Heating rate
Interplanetary turbulence
Magnetic fields
Propagation modes
Solar corona
Solar magnetic field
Solar probes
Solar wind
Solar wind flow
Solar wind models
Solar wind turbulence
The Sun
Turbulence models
Wind flow
title A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Solar%20Coronal%20Hole%20and%20Fast%20Solar%20Wind%20Turbulence%20Model%20and%20First-orbit%20Parker%20Solar%20Probe%20(PSP)%20Observations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Adhikari,%20L.&rft.date=2020-10-01&rft.volume=901&rft.issue=2&rft.spage=102&rft.pages=102-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb132&rft_dat=%3Cproquest_O3W%3E2447020546%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447020546&rft_id=info:pmid/&rfr_iscdi=true