Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA
Disintegrating planets are ultrashort-period exoplanets that appear to have a comet-like dust tail. They are commonly interpreted as low-mass planets whose solid surface is evaporating, and whose tails are made of recondensing minerals. Transmission spectroscopy of the dust tails could thus allow us...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-10, Vol.901 (2), p.171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | The Astrophysical journal |
container_volume | 901 |
creator | Okuya, Ayaka Okuzumi, Satoshi Ohno, Kazumasa Hirano, Teruyuki |
description | Disintegrating planets are ultrashort-period exoplanets that appear to have a comet-like dust tail. They are commonly interpreted as low-mass planets whose solid surface is evaporating, and whose tails are made of recondensing minerals. Transmission spectroscopy of the dust tails could thus allow us to directly probe the elementary compositions of these planets. Previous work already investigated the feasibility of such observations using the James Webb Space Telescope (JWST) mid-infrared instrument. In this study, we explore if one can obtain a strong constrain on the tail composition by adding spectroscopy at longer wavelengths using the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mid-infrared instrument. We use a simple model for the spatial distribution of the dust tails and produce their synthetic transmission spectra assuming various dust compositions. We find that combined infrared spectra from JWST and SPICA will allow us to diagnose various components of the dust tails. JWST will be able to detect silicate and carbide absorption features with a feature-to-noise ratio of 3 in the tail transmission spectrum of a disintegrating planet located within 100 pc from the Earth, with a transit depth deeper than 0.5%. SPICA can distinguish between Fe- and Mg-bearing crystalline silicates for planets at 100 pc with a transit depth of 2%. Transit searches with current and future space telescopes (e.g., TESS and PLATO) will provide ideal targets for such spectroscopic observations. |
doi_str_mv | 10.3847/1538-4357/abb088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abb088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448681112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-57dd44acb6ba1fba30a683fd9cdd454d70c07fbd12f9830491c738fadc9b9f913</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoOKfvPgbEN-uSJm2TR63zi4HCNvQtpE0zM9ekJp3of29LRV_Ep8s993fOhQPAMUbnhNFsghPCIkqSbCKLAjG2A0Y_0i4YIYRolJLseR8chLDu15jzEXjPnQ2tl8Yau4LtSwUvt5tXmLu6ccG0xlnoNLwywdi2WnnZ9tj0wzUbaas2wGXohQ4vjK0UXHhpQ21C6I3zpiq7aKi9q-H903wBpVVw_niXXxyCPS03oTr6nmOwvJ4u8tto9nDTnWdRSTlqoyRTilJZFmkhsS4kQTJlRCtednpCVYZKlOlC4VhzRhDluMwI01KVvOCaYzIGJ0Nu493btgqtWLutt91LEVPKUoYxjjsKDVTpXQi-0qLxppb-U2Ak-nZFX6XoqxRDu53lbLAY1_xm_oOf_oHLZi04wiIWOMOiUZp8AciaieQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448681112</pqid></control><display><type>article</type><title>Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA</title><source>IOP Publishing Free Content</source><creator>Okuya, Ayaka ; Okuzumi, Satoshi ; Ohno, Kazumasa ; Hirano, Teruyuki</creator><creatorcontrib>Okuya, Ayaka ; Okuzumi, Satoshi ; Ohno, Kazumasa ; Hirano, Teruyuki</creatorcontrib><description>Disintegrating planets are ultrashort-period exoplanets that appear to have a comet-like dust tail. They are commonly interpreted as low-mass planets whose solid surface is evaporating, and whose tails are made of recondensing minerals. Transmission spectroscopy of the dust tails could thus allow us to directly probe the elementary compositions of these planets. Previous work already investigated the feasibility of such observations using the James Webb Space Telescope (JWST) mid-infrared instrument. In this study, we explore if one can obtain a strong constrain on the tail composition by adding spectroscopy at longer wavelengths using the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mid-infrared instrument. We use a simple model for the spatial distribution of the dust tails and produce their synthetic transmission spectra assuming various dust compositions. We find that combined infrared spectra from JWST and SPICA will allow us to diagnose various components of the dust tails. JWST will be able to detect silicate and carbide absorption features with a feature-to-noise ratio of 3 in the tail transmission spectrum of a disintegrating planet located within 100 pc from the Earth, with a transit depth deeper than 0.5%. SPICA can distinguish between Fe- and Mg-bearing crystalline silicates for planets at 100 pc with a transit depth of 2%. Transit searches with current and future space telescopes (e.g., TESS and PLATO) will provide ideal targets for such spectroscopic observations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb088</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cosmology ; Disintegration ; Dust ; Exoplanet astronomy ; Extrasolar planets ; Infrared instruments ; Infrared spectra ; Infrared telescopes ; James Webb Space Telescope ; Planetary composition ; Silicates ; Solid surfaces ; Space telescopes ; Spatial distribution ; Spectroscopy ; Spectrum analysis ; Telescopes ; Transit ; Transmission spectroscopy ; Wavelengths</subject><ispartof>The Astrophysical journal, 2020-10, Vol.901 (2), p.171</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-57dd44acb6ba1fba30a683fd9cdd454d70c07fbd12f9830491c738fadc9b9f913</citedby><cites>FETCH-LOGICAL-c490t-57dd44acb6ba1fba30a683fd9cdd454d70c07fbd12f9830491c738fadc9b9f913</cites><orcidid>0000-0003-3618-7535 ; 0000-0001-6222-9423 ; 0000-0002-1886-0880 ; 0000-0003-3290-6758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb088/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27911,27912,38877,53854</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb088$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Okuya, Ayaka</creatorcontrib><creatorcontrib>Okuzumi, Satoshi</creatorcontrib><creatorcontrib>Ohno, Kazumasa</creatorcontrib><creatorcontrib>Hirano, Teruyuki</creatorcontrib><title>Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Disintegrating planets are ultrashort-period exoplanets that appear to have a comet-like dust tail. They are commonly interpreted as low-mass planets whose solid surface is evaporating, and whose tails are made of recondensing minerals. Transmission spectroscopy of the dust tails could thus allow us to directly probe the elementary compositions of these planets. Previous work already investigated the feasibility of such observations using the James Webb Space Telescope (JWST) mid-infrared instrument. In this study, we explore if one can obtain a strong constrain on the tail composition by adding spectroscopy at longer wavelengths using the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mid-infrared instrument. We use a simple model for the spatial distribution of the dust tails and produce their synthetic transmission spectra assuming various dust compositions. We find that combined infrared spectra from JWST and SPICA will allow us to diagnose various components of the dust tails. JWST will be able to detect silicate and carbide absorption features with a feature-to-noise ratio of 3 in the tail transmission spectrum of a disintegrating planet located within 100 pc from the Earth, with a transit depth deeper than 0.5%. SPICA can distinguish between Fe- and Mg-bearing crystalline silicates for planets at 100 pc with a transit depth of 2%. Transit searches with current and future space telescopes (e.g., TESS and PLATO) will provide ideal targets for such spectroscopic observations.</description><subject>Astrophysics</subject><subject>Cosmology</subject><subject>Disintegration</subject><subject>Dust</subject><subject>Exoplanet astronomy</subject><subject>Extrasolar planets</subject><subject>Infrared instruments</subject><subject>Infrared spectra</subject><subject>Infrared telescopes</subject><subject>James Webb Space Telescope</subject><subject>Planetary composition</subject><subject>Silicates</subject><subject>Solid surfaces</subject><subject>Space telescopes</subject><subject>Spatial distribution</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Telescopes</subject><subject>Transit</subject><subject>Transmission spectroscopy</subject><subject>Wavelengths</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYMoOKfvPgbEN-uSJm2TR63zi4HCNvQtpE0zM9ekJp3of29LRV_Ep8s993fOhQPAMUbnhNFsghPCIkqSbCKLAjG2A0Y_0i4YIYRolJLseR8chLDu15jzEXjPnQ2tl8Yau4LtSwUvt5tXmLu6ccG0xlnoNLwywdi2WnnZ9tj0wzUbaas2wGXohQ4vjK0UXHhpQ21C6I3zpiq7aKi9q-H903wBpVVw_niXXxyCPS03oTr6nmOwvJ4u8tto9nDTnWdRSTlqoyRTilJZFmkhsS4kQTJlRCtednpCVYZKlOlC4VhzRhDluMwI01KVvOCaYzIGJ0Nu493btgqtWLutt91LEVPKUoYxjjsKDVTpXQi-0qLxppb-U2Ak-nZFX6XoqxRDu53lbLAY1_xm_oOf_oHLZi04wiIWOMOiUZp8AciaieQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Okuya, Ayaka</creator><creator>Okuzumi, Satoshi</creator><creator>Ohno, Kazumasa</creator><creator>Hirano, Teruyuki</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3618-7535</orcidid><orcidid>https://orcid.org/0000-0001-6222-9423</orcidid><orcidid>https://orcid.org/0000-0002-1886-0880</orcidid><orcidid>https://orcid.org/0000-0003-3290-6758</orcidid></search><sort><creationdate>20201001</creationdate><title>Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA</title><author>Okuya, Ayaka ; Okuzumi, Satoshi ; Ohno, Kazumasa ; Hirano, Teruyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-57dd44acb6ba1fba30a683fd9cdd454d70c07fbd12f9830491c738fadc9b9f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Cosmology</topic><topic>Disintegration</topic><topic>Dust</topic><topic>Exoplanet astronomy</topic><topic>Extrasolar planets</topic><topic>Infrared instruments</topic><topic>Infrared spectra</topic><topic>Infrared telescopes</topic><topic>James Webb Space Telescope</topic><topic>Planetary composition</topic><topic>Silicates</topic><topic>Solid surfaces</topic><topic>Space telescopes</topic><topic>Spatial distribution</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Telescopes</topic><topic>Transit</topic><topic>Transmission spectroscopy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okuya, Ayaka</creatorcontrib><creatorcontrib>Okuzumi, Satoshi</creatorcontrib><creatorcontrib>Ohno, Kazumasa</creatorcontrib><creatorcontrib>Hirano, Teruyuki</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Okuya, Ayaka</au><au>Okuzumi, Satoshi</au><au>Ohno, Kazumasa</au><au>Hirano, Teruyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>901</volume><issue>2</issue><spage>171</spage><pages>171-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Disintegrating planets are ultrashort-period exoplanets that appear to have a comet-like dust tail. They are commonly interpreted as low-mass planets whose solid surface is evaporating, and whose tails are made of recondensing minerals. Transmission spectroscopy of the dust tails could thus allow us to directly probe the elementary compositions of these planets. Previous work already investigated the feasibility of such observations using the James Webb Space Telescope (JWST) mid-infrared instrument. In this study, we explore if one can obtain a strong constrain on the tail composition by adding spectroscopy at longer wavelengths using the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mid-infrared instrument. We use a simple model for the spatial distribution of the dust tails and produce their synthetic transmission spectra assuming various dust compositions. We find that combined infrared spectra from JWST and SPICA will allow us to diagnose various components of the dust tails. JWST will be able to detect silicate and carbide absorption features with a feature-to-noise ratio of 3 in the tail transmission spectrum of a disintegrating planet located within 100 pc from the Earth, with a transit depth deeper than 0.5%. SPICA can distinguish between Fe- and Mg-bearing crystalline silicates for planets at 100 pc with a transit depth of 2%. Transit searches with current and future space telescopes (e.g., TESS and PLATO) will provide ideal targets for such spectroscopic observations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb088</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3618-7535</orcidid><orcidid>https://orcid.org/0000-0001-6222-9423</orcidid><orcidid>https://orcid.org/0000-0002-1886-0880</orcidid><orcidid>https://orcid.org/0000-0003-3290-6758</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-10, Vol.901 (2), p.171 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_abb088 |
source | IOP Publishing Free Content |
subjects | Astrophysics Cosmology Disintegration Dust Exoplanet astronomy Extrasolar planets Infrared instruments Infrared spectra Infrared telescopes James Webb Space Telescope Planetary composition Silicates Solid surfaces Space telescopes Spatial distribution Spectroscopy Spectrum analysis Telescopes Transit Transmission spectroscopy Wavelengths |
title | Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20the%20Bulk%20Composition%20of%20Disintegrating%20Exoplanets%20Using%20Combined%20Transmission%20Spectra%20from%20JWST%20and%20SPICA&rft.jtitle=The%20Astrophysical%20journal&rft.au=Okuya,%20Ayaka&rft.date=2020-10-01&rft.volume=901&rft.issue=2&rft.spage=171&rft.pages=171-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb088&rft_dat=%3Cproquest_O3W%3E2448681112%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448681112&rft_id=info:pmid/&rfr_iscdi=true |