Kelvin-Helmholtz Instability at Proton Scales with an Exact Kinetic Equilibrium

The Kelvin-Helmholtz instability (KHI) is a ubiquitous physical process in ordinary fluids and plasmas, frequently observed also in space environments. In this paper, kinetic effects at proton scales in the nonlinear and turbulent stage of the KHI have been studied in magnetized collisionless plasma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-09, Vol.901 (1), p.17
Hauptverfasser: Settino, A., Malara, F., Pezzi, O., Onofri, M., Perrone, D., Valentini, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 17
container_title The Astrophysical journal
container_volume 901
creator Settino, A.
Malara, F.
Pezzi, O.
Onofri, M.
Perrone, D.
Valentini, F.
description The Kelvin-Helmholtz instability (KHI) is a ubiquitous physical process in ordinary fluids and plasmas, frequently observed also in space environments. In this paper, kinetic effects at proton scales in the nonlinear and turbulent stage of the KHI have been studied in magnetized collisionless plasmas by means of hybrid Vlasov-Maxwell simulations. The main goal of this work is to point out the back-reaction on particles triggered by the evolution of such instability, as energy reaches kinetic scales along the turbulent cascade. Interestingly, turbulence is inhibited when KHI develops over an initial state that is not an exact equilibrium state. On the other hand, when an initial equilibrium condition is considered, energy can be efficiently transferred toward short scales, reaches the typical proton wavelengths, and drives the dynamics of particles. As a consequence of the interaction of particles with the turbulent fluctuating fields, the proton velocity distribution deviates significantly from the local thermodynamic equilibrium, the degree of deviation increasing with the level of turbulence in the system and being located near regions of strong magnetic stresses. These numerical results support recent space observations from the Magnetospheric MultiScale mission of ion kinetic effects driven by the turbulent dynamics at Earth's magnetosheath and by the KHI in Earth's magnetosphere.
doi_str_mv 10.3847/1538-4357/abada9
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_abada9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444651157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9392dc58a7cba800eda90191ac57d9f5616c8d02758dbeb3bb5da03db065b6b23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwGv1iVN07RHGdONDSao4C3k11hG13RJqs6_3paKnjw93uPzfe_xAeAaoztSZGyCKSmSjFA2EVJoUZ6A0e_oFIwQQlmSE_Z2Di5C2PVtWpYjsF6a6t3WydxU-62r4hdc1CEKaSsbj1BE-ORddDV8VqIyAX7YuIWihrNPoSJc2tpEq-Ds0Ha89LbdX4KzjaiCufqpY_D6MHuZzpPV-nExvV8lilAUk5KUqVa0EExJUSBkuo8RLrFQlOlyQ3Ocq0KjlNFCSyOJlFQLRLREOZW5TMkY3Ax7G-8OrQmR71zr6-4kT7MsyynGlHUUGijlXQjebHjj7V74I8eI99p474j3jvigrYvcDhHrmr-d_-Lfjbtvrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444651157</pqid></control><display><type>article</type><title>Kelvin-Helmholtz Instability at Proton Scales with an Exact Kinetic Equilibrium</title><source>IOP Publishing Free Content</source><creator>Settino, A. ; Malara, F. ; Pezzi, O. ; Onofri, M. ; Perrone, D. ; Valentini, F.</creator><creatorcontrib>Settino, A. ; Malara, F. ; Pezzi, O. ; Onofri, M. ; Perrone, D. ; Valentini, F.</creatorcontrib><description>The Kelvin-Helmholtz instability (KHI) is a ubiquitous physical process in ordinary fluids and plasmas, frequently observed also in space environments. In this paper, kinetic effects at proton scales in the nonlinear and turbulent stage of the KHI have been studied in magnetized collisionless plasmas by means of hybrid Vlasov-Maxwell simulations. The main goal of this work is to point out the back-reaction on particles triggered by the evolution of such instability, as energy reaches kinetic scales along the turbulent cascade. Interestingly, turbulence is inhibited when KHI develops over an initial state that is not an exact equilibrium state. On the other hand, when an initial equilibrium condition is considered, energy can be efficiently transferred toward short scales, reaches the typical proton wavelengths, and drives the dynamics of particles. As a consequence of the interaction of particles with the turbulent fluctuating fields, the proton velocity distribution deviates significantly from the local thermodynamic equilibrium, the degree of deviation increasing with the level of turbulence in the system and being located near regions of strong magnetic stresses. These numerical results support recent space observations from the Magnetospheric MultiScale mission of ion kinetic effects driven by the turbulent dynamics at Earth's magnetosheath and by the KHI in Earth's magnetosphere.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abada9</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Collisionless plasmas ; Computational fluid dynamics ; Computer simulation ; Earth magnetosphere ; Fluid flow ; Instability ; Interplanetary turbulence ; Kelvin-Helmholtz instability ; Local thermodynamic equilibrium ; Magnetosheath ; Protons ; Space plasmas ; Turbulence ; Velocity distribution ; Wavelengths</subject><ispartof>The Astrophysical journal, 2020-09, Vol.901 (1), p.17</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9392dc58a7cba800eda90191ac57d9f5616c8d02758dbeb3bb5da03db065b6b23</citedby><cites>FETCH-LOGICAL-c350t-9392dc58a7cba800eda90191ac57d9f5616c8d02758dbeb3bb5da03db065b6b23</cites><orcidid>0000-0003-0818-4628 ; 0000-0003-1821-7390 ; 0000-0002-1296-1971 ; 0000-0002-5554-8765 ; 0000-0002-7638-1706 ; 0000-0003-1059-4853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abada9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abada9$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Settino, A.</creatorcontrib><creatorcontrib>Malara, F.</creatorcontrib><creatorcontrib>Pezzi, O.</creatorcontrib><creatorcontrib>Onofri, M.</creatorcontrib><creatorcontrib>Perrone, D.</creatorcontrib><creatorcontrib>Valentini, F.</creatorcontrib><title>Kelvin-Helmholtz Instability at Proton Scales with an Exact Kinetic Equilibrium</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The Kelvin-Helmholtz instability (KHI) is a ubiquitous physical process in ordinary fluids and plasmas, frequently observed also in space environments. In this paper, kinetic effects at proton scales in the nonlinear and turbulent stage of the KHI have been studied in magnetized collisionless plasmas by means of hybrid Vlasov-Maxwell simulations. The main goal of this work is to point out the back-reaction on particles triggered by the evolution of such instability, as energy reaches kinetic scales along the turbulent cascade. Interestingly, turbulence is inhibited when KHI develops over an initial state that is not an exact equilibrium state. On the other hand, when an initial equilibrium condition is considered, energy can be efficiently transferred toward short scales, reaches the typical proton wavelengths, and drives the dynamics of particles. As a consequence of the interaction of particles with the turbulent fluctuating fields, the proton velocity distribution deviates significantly from the local thermodynamic equilibrium, the degree of deviation increasing with the level of turbulence in the system and being located near regions of strong magnetic stresses. These numerical results support recent space observations from the Magnetospheric MultiScale mission of ion kinetic effects driven by the turbulent dynamics at Earth's magnetosheath and by the KHI in Earth's magnetosphere.</description><subject>Astrophysics</subject><subject>Collisionless plasmas</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth magnetosphere</subject><subject>Fluid flow</subject><subject>Instability</subject><subject>Interplanetary turbulence</subject><subject>Kelvin-Helmholtz instability</subject><subject>Local thermodynamic equilibrium</subject><subject>Magnetosheath</subject><subject>Protons</subject><subject>Space plasmas</subject><subject>Turbulence</subject><subject>Velocity distribution</subject><subject>Wavelengths</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwGv1iVN07RHGdONDSao4C3k11hG13RJqs6_3paKnjw93uPzfe_xAeAaoztSZGyCKSmSjFA2EVJoUZ6A0e_oFIwQQlmSE_Z2Di5C2PVtWpYjsF6a6t3WydxU-62r4hdc1CEKaSsbj1BE-ORddDV8VqIyAX7YuIWihrNPoSJc2tpEq-Ds0Ha89LbdX4KzjaiCufqpY_D6MHuZzpPV-nExvV8lilAUk5KUqVa0EExJUSBkuo8RLrFQlOlyQ3Ocq0KjlNFCSyOJlFQLRLREOZW5TMkY3Ax7G-8OrQmR71zr6-4kT7MsyynGlHUUGijlXQjebHjj7V74I8eI99p474j3jvigrYvcDhHrmr-d_-Lfjbtvrg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Settino, A.</creator><creator>Malara, F.</creator><creator>Pezzi, O.</creator><creator>Onofri, M.</creator><creator>Perrone, D.</creator><creator>Valentini, F.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0818-4628</orcidid><orcidid>https://orcid.org/0000-0003-1821-7390</orcidid><orcidid>https://orcid.org/0000-0002-1296-1971</orcidid><orcidid>https://orcid.org/0000-0002-5554-8765</orcidid><orcidid>https://orcid.org/0000-0002-7638-1706</orcidid><orcidid>https://orcid.org/0000-0003-1059-4853</orcidid></search><sort><creationdate>20200901</creationdate><title>Kelvin-Helmholtz Instability at Proton Scales with an Exact Kinetic Equilibrium</title><author>Settino, A. ; Malara, F. ; Pezzi, O. ; Onofri, M. ; Perrone, D. ; Valentini, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9392dc58a7cba800eda90191ac57d9f5616c8d02758dbeb3bb5da03db065b6b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Collisionless plasmas</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth magnetosphere</topic><topic>Fluid flow</topic><topic>Instability</topic><topic>Interplanetary turbulence</topic><topic>Kelvin-Helmholtz instability</topic><topic>Local thermodynamic equilibrium</topic><topic>Magnetosheath</topic><topic>Protons</topic><topic>Space plasmas</topic><topic>Turbulence</topic><topic>Velocity distribution</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Settino, A.</creatorcontrib><creatorcontrib>Malara, F.</creatorcontrib><creatorcontrib>Pezzi, O.</creatorcontrib><creatorcontrib>Onofri, M.</creatorcontrib><creatorcontrib>Perrone, D.</creatorcontrib><creatorcontrib>Valentini, F.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Settino, A.</au><au>Malara, F.</au><au>Pezzi, O.</au><au>Onofri, M.</au><au>Perrone, D.</au><au>Valentini, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kelvin-Helmholtz Instability at Proton Scales with an Exact Kinetic Equilibrium</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>901</volume><issue>1</issue><spage>17</spage><pages>17-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The Kelvin-Helmholtz instability (KHI) is a ubiquitous physical process in ordinary fluids and plasmas, frequently observed also in space environments. In this paper, kinetic effects at proton scales in the nonlinear and turbulent stage of the KHI have been studied in magnetized collisionless plasmas by means of hybrid Vlasov-Maxwell simulations. The main goal of this work is to point out the back-reaction on particles triggered by the evolution of such instability, as energy reaches kinetic scales along the turbulent cascade. Interestingly, turbulence is inhibited when KHI develops over an initial state that is not an exact equilibrium state. On the other hand, when an initial equilibrium condition is considered, energy can be efficiently transferred toward short scales, reaches the typical proton wavelengths, and drives the dynamics of particles. As a consequence of the interaction of particles with the turbulent fluctuating fields, the proton velocity distribution deviates significantly from the local thermodynamic equilibrium, the degree of deviation increasing with the level of turbulence in the system and being located near regions of strong magnetic stresses. These numerical results support recent space observations from the Magnetospheric MultiScale mission of ion kinetic effects driven by the turbulent dynamics at Earth's magnetosheath and by the KHI in Earth's magnetosphere.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abada9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0818-4628</orcidid><orcidid>https://orcid.org/0000-0003-1821-7390</orcidid><orcidid>https://orcid.org/0000-0002-1296-1971</orcidid><orcidid>https://orcid.org/0000-0002-5554-8765</orcidid><orcidid>https://orcid.org/0000-0002-7638-1706</orcidid><orcidid>https://orcid.org/0000-0003-1059-4853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-09, Vol.901 (1), p.17
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_abada9
source IOP Publishing Free Content
subjects Astrophysics
Collisionless plasmas
Computational fluid dynamics
Computer simulation
Earth magnetosphere
Fluid flow
Instability
Interplanetary turbulence
Kelvin-Helmholtz instability
Local thermodynamic equilibrium
Magnetosheath
Protons
Space plasmas
Turbulence
Velocity distribution
Wavelengths
title Kelvin-Helmholtz Instability at Proton Scales with an Exact Kinetic Equilibrium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kelvin-Helmholtz%20Instability%20at%20Proton%20Scales%20with%20an%20Exact%20Kinetic%20Equilibrium&rft.jtitle=The%20Astrophysical%20journal&rft.au=Settino,%20A.&rft.date=2020-09-01&rft.volume=901&rft.issue=1&rft.spage=17&rft.pages=17-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abada9&rft_dat=%3Cproquest_O3W%3E2444651157%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444651157&rft_id=info:pmid/&rfr_iscdi=true