Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry

We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-08, Vol.899 (2), p.147
Hauptverfasser: Fleury, Benjamin, Gudipati, Murthy S., Henderson, Bryana L., Swain, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 147
container_title The Astrophysical journal
container_volume 899
creator Fleury, Benjamin
Gudipati, Murthy S.
Henderson, Bryana L.
Swain, Mark
description We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio < 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars.
doi_str_mv 10.3847/1538-4357/aba828
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aba828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436903879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwHxZu1r0zYJnkZRNxkMRMFbSJuEdWxNTdLD_ntbKnrR0-M9vt_vwYfQdQL3hGU0TnLCoozkNJaVZCk7QbOf0ymaAUAWFYR-nKML73fjmnI-Qw-r1ux73dYaW4PLeINfZWgsti1e2oBf-q4J2uFFOFjfbbVralxu9aHxwR0v0ZmRe6-vvuccvT89vpXLaL15XpWLdVQTBiEqeFoRRnjBmcmNzmsuIQHFgIBmOYFMJRkpFNCCVCpXlOQAVCrDVcXqZMDm6Gbq7Zz97LUPYmd71w4vRTokORBG-UDBRNXOeu-0EZ1rDtIdRQJiVCRGH2L0ISZFQ-R2ijS2--2U3U4wzkUqkiHUKTNwd39w_9Z-ASIZcdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436903879</pqid></control><display><type>article</type><title>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</title><source>IOP Publishing Free Content</source><creator>Fleury, Benjamin ; Gudipati, Murthy S. ; Henderson, Bryana L. ; Swain, Mark</creator><creatorcontrib>Fleury, Benjamin ; Gudipati, Murthy S. ; Henderson, Bryana L. ; Swain, Mark</creatorcontrib><description>We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio &lt; 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aba828</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Aerosol formation ; Aerosols ; Astrophysics ; Atmosphere ; Atmospheric chemistry ; Carbon dioxide ; Carbon dioxide concentration ; Exoplanet atmospheres ; Exoplanet atmospheric composition ; Extrasolar planets ; Gas giant planets ; Gas mixtures ; Jupiter ; Laboratory astrophysics ; Laboratory experiments ; Moisture content ; Photochemicals ; Photochemistry ; Photolysis ; Planetary atmospheres ; Water content</subject><ispartof>The Astrophysical journal, 2020-08, Vol.899 (2), p.147</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</citedby><cites>FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</cites><orcidid>0000-0001-5992-373X ; 0000-0003-1845-6690 ; 0000-0001-9385-3376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba828/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba828$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Fleury, Benjamin</creatorcontrib><creatorcontrib>Gudipati, Murthy S.</creatorcontrib><creatorcontrib>Henderson, Bryana L.</creatorcontrib><creatorcontrib>Swain, Mark</creatorcontrib><title>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio &lt; 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars.</description><subject>Abundance</subject><subject>Aerosol formation</subject><subject>Aerosols</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanet atmospheric composition</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>Gas mixtures</subject><subject>Jupiter</subject><subject>Laboratory astrophysics</subject><subject>Laboratory experiments</subject><subject>Moisture content</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photolysis</subject><subject>Planetary atmospheres</subject><subject>Water content</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwHxZu1r0zYJnkZRNxkMRMFbSJuEdWxNTdLD_ntbKnrR0-M9vt_vwYfQdQL3hGU0TnLCoozkNJaVZCk7QbOf0ymaAUAWFYR-nKML73fjmnI-Qw-r1ux73dYaW4PLeINfZWgsti1e2oBf-q4J2uFFOFjfbbVralxu9aHxwR0v0ZmRe6-vvuccvT89vpXLaL15XpWLdVQTBiEqeFoRRnjBmcmNzmsuIQHFgIBmOYFMJRkpFNCCVCpXlOQAVCrDVcXqZMDm6Gbq7Zz97LUPYmd71w4vRTokORBG-UDBRNXOeu-0EZ1rDtIdRQJiVCRGH2L0ISZFQ-R2ijS2--2U3U4wzkUqkiHUKTNwd39w_9Z-ASIZcdY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Fleury, Benjamin</creator><creator>Gudipati, Murthy S.</creator><creator>Henderson, Bryana L.</creator><creator>Swain, Mark</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5992-373X</orcidid><orcidid>https://orcid.org/0000-0003-1845-6690</orcidid><orcidid>https://orcid.org/0000-0001-9385-3376</orcidid></search><sort><creationdate>20200801</creationdate><title>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</title><author>Fleury, Benjamin ; Gudipati, Murthy S. ; Henderson, Bryana L. ; Swain, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Aerosol formation</topic><topic>Aerosols</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanet atmospheric composition</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>Gas mixtures</topic><topic>Jupiter</topic><topic>Laboratory astrophysics</topic><topic>Laboratory experiments</topic><topic>Moisture content</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photolysis</topic><topic>Planetary atmospheres</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleury, Benjamin</creatorcontrib><creatorcontrib>Gudipati, Murthy S.</creatorcontrib><creatorcontrib>Henderson, Bryana L.</creatorcontrib><creatorcontrib>Swain, Mark</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fleury, Benjamin</au><au>Gudipati, Murthy S.</au><au>Henderson, Bryana L.</au><au>Swain, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>899</volume><issue>2</issue><spage>147</spage><pages>147-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio &lt; 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aba828</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5992-373X</orcidid><orcidid>https://orcid.org/0000-0003-1845-6690</orcidid><orcidid>https://orcid.org/0000-0001-9385-3376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-08, Vol.899 (2), p.147
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_aba828
source IOP Publishing Free Content
subjects Abundance
Aerosol formation
Aerosols
Astrophysics
Atmosphere
Atmospheric chemistry
Carbon dioxide
Carbon dioxide concentration
Exoplanet atmospheres
Exoplanet atmospheric composition
Extrasolar planets
Gas giant planets
Gas mixtures
Jupiter
Laboratory astrophysics
Laboratory experiments
Moisture content
Photochemicals
Photochemistry
Photolysis
Planetary atmospheres
Water content
title Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20C/O%20Ratio%20on%20Hot%20Jupiter%20Atmospheric%20Chemistry&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fleury,%20Benjamin&rft.date=2020-08-01&rft.volume=899&rft.issue=2&rft.spage=147&rft.pages=147-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aba828&rft_dat=%3Cproquest_O3W%3E2436903879%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436903879&rft_id=info:pmid/&rfr_iscdi=true