Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry
We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemica...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-08, Vol.899 (2), p.147 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | The Astrophysical journal |
container_volume | 899 |
creator | Fleury, Benjamin Gudipati, Murthy S. Henderson, Bryana L. Swain, Mark |
description | We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio < 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars. |
doi_str_mv | 10.3847/1538-4357/aba828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aba828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436903879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwHxZu1r0zYJnkZRNxkMRMFbSJuEdWxNTdLD_ntbKnrR0-M9vt_vwYfQdQL3hGU0TnLCoozkNJaVZCk7QbOf0ymaAUAWFYR-nKML73fjmnI-Qw-r1ux73dYaW4PLeINfZWgsti1e2oBf-q4J2uFFOFjfbbVralxu9aHxwR0v0ZmRe6-vvuccvT89vpXLaL15XpWLdVQTBiEqeFoRRnjBmcmNzmsuIQHFgIBmOYFMJRkpFNCCVCpXlOQAVCrDVcXqZMDm6Gbq7Zz97LUPYmd71w4vRTokORBG-UDBRNXOeu-0EZ1rDtIdRQJiVCRGH2L0ISZFQ-R2ijS2--2U3U4wzkUqkiHUKTNwd39w_9Z-ASIZcdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436903879</pqid></control><display><type>article</type><title>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</title><source>IOP Publishing Free Content</source><creator>Fleury, Benjamin ; Gudipati, Murthy S. ; Henderson, Bryana L. ; Swain, Mark</creator><creatorcontrib>Fleury, Benjamin ; Gudipati, Murthy S. ; Henderson, Bryana L. ; Swain, Mark</creatorcontrib><description>We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio < 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aba828</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Aerosol formation ; Aerosols ; Astrophysics ; Atmosphere ; Atmospheric chemistry ; Carbon dioxide ; Carbon dioxide concentration ; Exoplanet atmospheres ; Exoplanet atmospheric composition ; Extrasolar planets ; Gas giant planets ; Gas mixtures ; Jupiter ; Laboratory astrophysics ; Laboratory experiments ; Moisture content ; Photochemicals ; Photochemistry ; Photolysis ; Planetary atmospheres ; Water content</subject><ispartof>The Astrophysical journal, 2020-08, Vol.899 (2), p.147</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</citedby><cites>FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</cites><orcidid>0000-0001-5992-373X ; 0000-0003-1845-6690 ; 0000-0001-9385-3376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba828/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba828$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Fleury, Benjamin</creatorcontrib><creatorcontrib>Gudipati, Murthy S.</creatorcontrib><creatorcontrib>Henderson, Bryana L.</creatorcontrib><creatorcontrib>Swain, Mark</creatorcontrib><title>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio < 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars.</description><subject>Abundance</subject><subject>Aerosol formation</subject><subject>Aerosols</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanet atmospheric composition</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>Gas mixtures</subject><subject>Jupiter</subject><subject>Laboratory astrophysics</subject><subject>Laboratory experiments</subject><subject>Moisture content</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photolysis</subject><subject>Planetary atmospheres</subject><subject>Water content</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwHxZu1r0zYJnkZRNxkMRMFbSJuEdWxNTdLD_ntbKnrR0-M9vt_vwYfQdQL3hGU0TnLCoozkNJaVZCk7QbOf0ymaAUAWFYR-nKML73fjmnI-Qw-r1ux73dYaW4PLeINfZWgsti1e2oBf-q4J2uFFOFjfbbVralxu9aHxwR0v0ZmRe6-vvuccvT89vpXLaL15XpWLdVQTBiEqeFoRRnjBmcmNzmsuIQHFgIBmOYFMJRkpFNCCVCpXlOQAVCrDVcXqZMDm6Gbq7Zz97LUPYmd71w4vRTokORBG-UDBRNXOeu-0EZ1rDtIdRQJiVCRGH2L0ISZFQ-R2ijS2--2U3U4wzkUqkiHUKTNwd39w_9Z-ASIZcdY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Fleury, Benjamin</creator><creator>Gudipati, Murthy S.</creator><creator>Henderson, Bryana L.</creator><creator>Swain, Mark</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5992-373X</orcidid><orcidid>https://orcid.org/0000-0003-1845-6690</orcidid><orcidid>https://orcid.org/0000-0001-9385-3376</orcidid></search><sort><creationdate>20200801</creationdate><title>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</title><author>Fleury, Benjamin ; Gudipati, Murthy S. ; Henderson, Bryana L. ; Swain, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-692b3839698f5fe5c9a010d8030e85304d1436d0763bd5d735007adf9db8c1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Aerosol formation</topic><topic>Aerosols</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanet atmospheric composition</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>Gas mixtures</topic><topic>Jupiter</topic><topic>Laboratory astrophysics</topic><topic>Laboratory experiments</topic><topic>Moisture content</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photolysis</topic><topic>Planetary atmospheres</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleury, Benjamin</creatorcontrib><creatorcontrib>Gudipati, Murthy S.</creatorcontrib><creatorcontrib>Henderson, Bryana L.</creatorcontrib><creatorcontrib>Swain, Mark</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fleury, Benjamin</au><au>Gudipati, Murthy S.</au><au>Henderson, Bryana L.</au><au>Swain, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>899</volume><issue>2</issue><spage>147</spage><pages>147-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We conducted laboratory experiments to study the chemistry in hot Jupiter atmospheres with a C/O ratio of 0.35. We compared our results with the ones obtained previously for atmospheres with a C/O ratio of 1 to investigate the influence of the C/O ratio on the chemistry and formation of photochemical organic aerosol. We found that the C/O ratio and the gas mixture compositions strongly influence the pathways responsible for the formation of CO2. Thermochemical reactions are primarily responsible for the formation of CO2 in low C/O ratio atmospheres, while photochemistry is the dominant process in high C/O ratio atmospheres even if the final CO2 concentration is the same in both cases. Our results show that low C/O atmospheres at the thermochemical equilibrium contain a higher water abundance, while high C/O atmospheres are significantly depleted in water. However, in low C/O atmospheres, the water abundance is not affected by UV photolysis, while our previous work demonstrated that a significant amount of water can be produced in high C/O ratio atmospheres. This contrast in water production suggests that photochemistry should be considered when interpreting exoplanet transit spectra. Finally, we did not observe the formation of a detectable amount of nonvolatile photochemical aerosols in low C/O atmospheres, in contrast to our previous study. We infer that for a C/O ratio < 1, water likely inhibits organic growth and aerosol formation, suggesting that photochemical organic aerosols are likely to be observed in planets presenting a carbon enrichment compared to their host stars.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aba828</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5992-373X</orcidid><orcidid>https://orcid.org/0000-0003-1845-6690</orcidid><orcidid>https://orcid.org/0000-0001-9385-3376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-08, Vol.899 (2), p.147 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aba828 |
source | IOP Publishing Free Content |
subjects | Abundance Aerosol formation Aerosols Astrophysics Atmosphere Atmospheric chemistry Carbon dioxide Carbon dioxide concentration Exoplanet atmospheres Exoplanet atmospheric composition Extrasolar planets Gas giant planets Gas mixtures Jupiter Laboratory astrophysics Laboratory experiments Moisture content Photochemicals Photochemistry Photolysis Planetary atmospheres Water content |
title | Influence of C/O Ratio on Hot Jupiter Atmospheric Chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20C/O%20Ratio%20on%20Hot%20Jupiter%20Atmospheric%20Chemistry&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fleury,%20Benjamin&rft.date=2020-08-01&rft.volume=899&rft.issue=2&rft.spage=147&rft.pages=147-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aba828&rft_dat=%3Cproquest_O3W%3E2436903879%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436903879&rft_id=info:pmid/&rfr_iscdi=true |