The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations
The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an in...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-08, Vol.899 (2), p.116, Article 116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 116 |
container_title | The Astrophysical journal |
container_volume | 899 |
creator | Goldstein, J. Townsend, R. H. D. |
description | The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model. |
doi_str_mv | 10.3847/1538-4357/aba748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aba748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436903864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoOKd3jwGPWpc0P-ttFKfCnIJTvJW0SV1HbWaTMvzvTa3Mk2Aujzy-3_e-7wPAKUaXRFIxwYzIiBImJipXgso9MNq19sEIIUQjTsTrIThybt1_4yQZgZflysDUNt52Lbw3fmX1FVRwYbZwutm0VhUr6C2cVY2umjd4b7Vx0JZwYRulq7DKVwV88qauVQsfu9qFhm3cMTgoVe3MyU8dg-fZ9TK9jeYPN3fpdB4VhCEfCcxNeGVMFNacaC5LJWPGCC04RsgwzBkVOhGECIGokTIvYk2CJFeEIkzG4GyYG6J-dMb5bB0OacLKLKaEJ4hIToMKDaqitc61psw2bfWu2s8Mo6ynl_Wosh5VNtALFjlYtia3pSsq0xRmZwv4GCcY9SERwmnlv89Obdf4YD3_vzWoLwZ1ZTe_4f_M9QVBhY9O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436903864</pqid></control><display><type>article</type><title>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</title><source>Institute of Physics Open Access Journal Titles</source><creator>Goldstein, J. ; Townsend, R. H. D.</creator><creatorcontrib>Goldstein, J. ; Townsend, R. H. D.</creatorcontrib><description>The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aba748</identifier><language>eng</language><publisher>BRISTOL: The American Astronomical Society</publisher><subject>Asteroseismology ; Astronomical models ; Astronomy & Astrophysics ; Astronomy software ; Astrophysics ; Computational methods ; Contours ; Convergence ; Damping ; Eigenvalues ; Eigenvectors ; Helium ; Physical Sciences ; Pulsation ; Roots ; Science & Technology ; Shape ; Stellar models ; Stellar oscillations</subject><ispartof>The Astrophysical journal, 2020-08, Vol.899 (2), p.116, Article 116</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>47</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000563106100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</citedby><cites>FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba748/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27931,27932,28255,38897,53874</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba748$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Goldstein, J.</creatorcontrib><creatorcontrib>Townsend, R. H. D.</creatorcontrib><title>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>ASTROPHYS J</addtitle><addtitle>Astrophys. J</addtitle><description>The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model.</description><subject>Asteroseismology</subject><subject>Astronomical models</subject><subject>Astronomy & Astrophysics</subject><subject>Astronomy software</subject><subject>Astrophysics</subject><subject>Computational methods</subject><subject>Contours</subject><subject>Convergence</subject><subject>Damping</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Helium</subject><subject>Physical Sciences</subject><subject>Pulsation</subject><subject>Roots</subject><subject>Science & Technology</subject><subject>Shape</subject><subject>Stellar models</subject><subject>Stellar oscillations</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM9LwzAUx4MoOKd3jwGPWpc0P-ttFKfCnIJTvJW0SV1HbWaTMvzvTa3Mk2Aujzy-3_e-7wPAKUaXRFIxwYzIiBImJipXgso9MNq19sEIIUQjTsTrIThybt1_4yQZgZflysDUNt52Lbw3fmX1FVRwYbZwutm0VhUr6C2cVY2umjd4b7Vx0JZwYRulq7DKVwV88qauVQsfu9qFhm3cMTgoVe3MyU8dg-fZ9TK9jeYPN3fpdB4VhCEfCcxNeGVMFNacaC5LJWPGCC04RsgwzBkVOhGECIGokTIvYk2CJFeEIkzG4GyYG6J-dMb5bB0OacLKLKaEJ4hIToMKDaqitc61psw2bfWu2s8Mo6ynl_Wosh5VNtALFjlYtia3pSsq0xRmZwv4GCcY9SERwmnlv89Obdf4YD3_vzWoLwZ1ZTe_4f_M9QVBhY9O</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Goldstein, J.</creator><creator>Townsend, R. H. D.</creator><general>The American Astronomical Society</general><general>Iop Publishing Ltd</general><general>IOP Publishing</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20200801</creationdate><title>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</title><author>Goldstein, J. ; Townsend, R. H. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asteroseismology</topic><topic>Astronomical models</topic><topic>Astronomy & Astrophysics</topic><topic>Astronomy software</topic><topic>Astrophysics</topic><topic>Computational methods</topic><topic>Contours</topic><topic>Convergence</topic><topic>Damping</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Helium</topic><topic>Physical Sciences</topic><topic>Pulsation</topic><topic>Roots</topic><topic>Science & Technology</topic><topic>Shape</topic><topic>Stellar models</topic><topic>Stellar oscillations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldstein, J.</creatorcontrib><creatorcontrib>Townsend, R. H. D.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goldstein, J.</au><au>Townsend, R. H. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><stitle>ASTROPHYS J</stitle><addtitle>Astrophys. J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>899</volume><issue>2</issue><spage>116</spage><pages>116-</pages><artnum>116</artnum><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model.</abstract><cop>BRISTOL</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aba748</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-08, Vol.899 (2), p.116, Article 116 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_aba748 |
source | Institute of Physics Open Access Journal Titles |
subjects | Asteroseismology Astronomical models Astronomy & Astrophysics Astronomy software Astrophysics Computational methods Contours Convergence Damping Eigenvalues Eigenvectors Helium Physical Sciences Pulsation Roots Science & Technology Shape Stellar models Stellar oscillations |
title | The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Contour%20Method:%20a%20New%20Approach%20to%20Finding%20Modes%20of%20Nonadiabatic%20Stellar%20Pulsations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Goldstein,%20J.&rft.date=2020-08-01&rft.volume=899&rft.issue=2&rft.spage=116&rft.pages=116-&rft.artnum=116&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aba748&rft_dat=%3Cproquest_O3W%3E2436903864%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436903864&rft_id=info:pmid/&rfr_iscdi=true |