The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations

The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-08, Vol.899 (2), p.116, Article 116
Hauptverfasser: Goldstein, J., Townsend, R. H. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 116
container_title The Astrophysical journal
container_volume 899
creator Goldstein, J.
Townsend, R. H. D.
description The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model.
doi_str_mv 10.3847/1538-4357/aba748
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_aba748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436903864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoOKd3jwGPWpc0P-ttFKfCnIJTvJW0SV1HbWaTMvzvTa3Mk2Aujzy-3_e-7wPAKUaXRFIxwYzIiBImJipXgso9MNq19sEIIUQjTsTrIThybt1_4yQZgZflysDUNt52Lbw3fmX1FVRwYbZwutm0VhUr6C2cVY2umjd4b7Vx0JZwYRulq7DKVwV88qauVQsfu9qFhm3cMTgoVe3MyU8dg-fZ9TK9jeYPN3fpdB4VhCEfCcxNeGVMFNacaC5LJWPGCC04RsgwzBkVOhGECIGokTIvYk2CJFeEIkzG4GyYG6J-dMb5bB0OacLKLKaEJ4hIToMKDaqitc61psw2bfWu2s8Mo6ynl_Wosh5VNtALFjlYtia3pSsq0xRmZwv4GCcY9SERwmnlv89Obdf4YD3_vzWoLwZ1ZTe_4f_M9QVBhY9O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436903864</pqid></control><display><type>article</type><title>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</title><source>Institute of Physics Open Access Journal Titles</source><creator>Goldstein, J. ; Townsend, R. H. D.</creator><creatorcontrib>Goldstein, J. ; Townsend, R. H. D.</creatorcontrib><description>The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aba748</identifier><language>eng</language><publisher>BRISTOL: The American Astronomical Society</publisher><subject>Asteroseismology ; Astronomical models ; Astronomy &amp; Astrophysics ; Astronomy software ; Astrophysics ; Computational methods ; Contours ; Convergence ; Damping ; Eigenvalues ; Eigenvectors ; Helium ; Physical Sciences ; Pulsation ; Roots ; Science &amp; Technology ; Shape ; Stellar models ; Stellar oscillations</subject><ispartof>The Astrophysical journal, 2020-08, Vol.899 (2), p.116, Article 116</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>47</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000563106100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</citedby><cites>FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba748/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27931,27932,28255,38897,53874</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aba748$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Goldstein, J.</creatorcontrib><creatorcontrib>Townsend, R. H. D.</creatorcontrib><title>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>ASTROPHYS J</addtitle><addtitle>Astrophys. J</addtitle><description>The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model.</description><subject>Asteroseismology</subject><subject>Astronomical models</subject><subject>Astronomy &amp; Astrophysics</subject><subject>Astronomy software</subject><subject>Astrophysics</subject><subject>Computational methods</subject><subject>Contours</subject><subject>Convergence</subject><subject>Damping</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Helium</subject><subject>Physical Sciences</subject><subject>Pulsation</subject><subject>Roots</subject><subject>Science &amp; Technology</subject><subject>Shape</subject><subject>Stellar models</subject><subject>Stellar oscillations</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM9LwzAUx4MoOKd3jwGPWpc0P-ttFKfCnIJTvJW0SV1HbWaTMvzvTa3Mk2Aujzy-3_e-7wPAKUaXRFIxwYzIiBImJipXgso9MNq19sEIIUQjTsTrIThybt1_4yQZgZflysDUNt52Lbw3fmX1FVRwYbZwutm0VhUr6C2cVY2umjd4b7Vx0JZwYRulq7DKVwV88qauVQsfu9qFhm3cMTgoVe3MyU8dg-fZ9TK9jeYPN3fpdB4VhCEfCcxNeGVMFNacaC5LJWPGCC04RsgwzBkVOhGECIGokTIvYk2CJFeEIkzG4GyYG6J-dMb5bB0OacLKLKaEJ4hIToMKDaqitc61psw2bfWu2s8Mo6ynl_Wosh5VNtALFjlYtia3pSsq0xRmZwv4GCcY9SERwmnlv89Obdf4YD3_vzWoLwZ1ZTe_4f_M9QVBhY9O</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Goldstein, J.</creator><creator>Townsend, R. H. D.</creator><general>The American Astronomical Society</general><general>Iop Publishing Ltd</general><general>IOP Publishing</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20200801</creationdate><title>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</title><author>Goldstein, J. ; Townsend, R. H. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-716eeeef23a1d63d68fa825534c6100e516547d97337704e88bc2d3825ba34013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asteroseismology</topic><topic>Astronomical models</topic><topic>Astronomy &amp; Astrophysics</topic><topic>Astronomy software</topic><topic>Astrophysics</topic><topic>Computational methods</topic><topic>Contours</topic><topic>Convergence</topic><topic>Damping</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Helium</topic><topic>Physical Sciences</topic><topic>Pulsation</topic><topic>Roots</topic><topic>Science &amp; Technology</topic><topic>Shape</topic><topic>Stellar models</topic><topic>Stellar oscillations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldstein, J.</creatorcontrib><creatorcontrib>Townsend, R. H. D.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goldstein, J.</au><au>Townsend, R. H. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><stitle>ASTROPHYS J</stitle><addtitle>Astrophys. J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>899</volume><issue>2</issue><spage>116</spage><pages>116-</pages><artnum>116</artnum><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The contour method is a new approach to calculating the nonadiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear nonadiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each nonadiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to nonadiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way to obtain initial trial frequencies that robustly converges to nonadiabatic roots, even for stellar models with extremely nonadiabatic pulsations and thus high growth/damping rates. We describe the contour method implemented in the gyre stellar pulsation code and use it to calculate the nonadiabatic pulsation frequencies of and β Cephei star models, and of a extreme helium star model.</abstract><cop>BRISTOL</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aba748</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-08, Vol.899 (2), p.116, Article 116
issn 0004-637X
1538-4357
language eng
recordid cdi_iop_journals_10_3847_1538_4357_aba748
source Institute of Physics Open Access Journal Titles
subjects Asteroseismology
Astronomical models
Astronomy & Astrophysics
Astronomy software
Astrophysics
Computational methods
Contours
Convergence
Damping
Eigenvalues
Eigenvectors
Helium
Physical Sciences
Pulsation
Roots
Science & Technology
Shape
Stellar models
Stellar oscillations
title The Contour Method: a New Approach to Finding Modes of Nonadiabatic Stellar Pulsations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Contour%20Method:%20a%20New%20Approach%20to%20Finding%20Modes%20of%20Nonadiabatic%20Stellar%20Pulsations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Goldstein,%20J.&rft.date=2020-08-01&rft.volume=899&rft.issue=2&rft.spage=116&rft.pages=116-&rft.artnum=116&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aba748&rft_dat=%3Cproquest_O3W%3E2436903864%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436903864&rft_id=info:pmid/&rfr_iscdi=true