Response of SDO/HMI Observables to Heating of the Solar Atmosphere by Precipitating High-energy Electrons
We perform an analysis of the line-of-sight (LOS) observables of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) for models of the solar atmosphere heated by precipitating high-energy electrons during solar flares. The radiative hydrodynamic (RADYN) flare mod...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-04, Vol.893 (1), p.24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 24 |
container_title | The Astrophysical journal |
container_volume | 893 |
creator | Sadykov, Viacheslav M. Kosovichev, Alexander G. Kitiashvili, Irina N. Kerr, Graham S. |
description | We perform an analysis of the line-of-sight (LOS) observables of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) for models of the solar atmosphere heated by precipitating high-energy electrons during solar flares. The radiative hydrodynamic (RADYN) flare models are obtained from the F-CHROMA database. The Stokes profiles for the Fe 6173 line observed by SDO/HMI are calculated using the radiative transfer code RH1.5D, assuming statistical equilibrium for atomic level populations, and imposing uniform background vertical magnetic fields of various strengths. The SDO/HMI observing sequence and LOS data processing pipeline algorithm are applied to derive the observables (continuum intensity, line depth, Doppler velocity, LOS magnetic field). Our results reveal that the strongest deviations of the observables from the actual spectroscopic line parameters are found for the model with a total energy deposited of Etotal = 1.0 × 1012 erg cm−2, injected with a power-law spectral index of δ = 3 above a low-energy cutoff of Ec = 25 keV. The magnitudes of the velocity and magnetic field deviations depend on the imposed magnetic field, and can reach 0.35 km s−1 for LOS velocities, 90 G for LOS magnetic field, and 3% for continuum enhancement for the 1000 G imposed LOS magnetic field setup. For Etotal ≥ 3.0 × 1011 erg cm−2 models, the velocity and magnetic field deviations are most strongly correlated with the energy flux carried by ∼50 keV electrons, and the continuum enhancement is correlated with the synthesized ∼55-60 keV hard X-ray photon flux. The relatively low magnitudes of perturbations of the observables and absence of magnetic field sign reversals suggest that the considered RADYN beam heating models augmented with the uniform vertical magnetic field setups cannot explain the strong transient changes found in the SDO/HMI observations. |
doi_str_mv | 10.3847/1538-4357/ab7b6a |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_iop_journals_10_3847_1538_4357_ab7b6a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389278791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-a8776825c6a5378133ff0d586edbfa338f3e6e14ab8f51cde547fc8e3ddc23523</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKd3jwE9Wtc2TZMex5x2oEycgreQpi9bR9fUJBP239tS0Yt4erzH9_s9-BC6jMJbwhM2iSjhQUIom8iCFak8QqOf0zEahWGYBClh76fozLltv8ZZNkLVC7jWNA6w0Xh1t5zkTwu8LBzYT1nU4LA3OAfpq2bdE34DeGVqafHU74xrN2ABFwf8bEFVbeUHMK_WmwAasOsDntegvO0-nKMTLWsHF99zjN7u56-zPHhcPixm08dAJQn1geSMpTymKpWUMB4RonVYUp5CWWhJCNcEUogSWXBNI1UCTZhWHEhZqpjQmIzR1dDbWvOxB-fF1uxt070UMeFZzDjLoo4KB0pZ45wFLVpb7aQ9iCgUvVDR2xO9PTEI7SI3Q6Qy7W_nP_j1H7hst4JnREQiTkRbavIF_kuEdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389278791</pqid></control><display><type>article</type><title>Response of SDO/HMI Observables to Heating of the Solar Atmosphere by Precipitating High-energy Electrons</title><source>Institute of Physics Open Access Journal Titles</source><creator>Sadykov, Viacheslav M. ; Kosovichev, Alexander G. ; Kitiashvili, Irina N. ; Kerr, Graham S.</creator><creatorcontrib>Sadykov, Viacheslav M. ; Kosovichev, Alexander G. ; Kitiashvili, Irina N. ; Kerr, Graham S.</creatorcontrib><description>We perform an analysis of the line-of-sight (LOS) observables of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) for models of the solar atmosphere heated by precipitating high-energy electrons during solar flares. The radiative hydrodynamic (RADYN) flare models are obtained from the F-CHROMA database. The Stokes profiles for the Fe 6173 line observed by SDO/HMI are calculated using the radiative transfer code RH1.5D, assuming statistical equilibrium for atomic level populations, and imposing uniform background vertical magnetic fields of various strengths. The SDO/HMI observing sequence and LOS data processing pipeline algorithm are applied to derive the observables (continuum intensity, line depth, Doppler velocity, LOS magnetic field). Our results reveal that the strongest deviations of the observables from the actual spectroscopic line parameters are found for the model with a total energy deposited of Etotal = 1.0 × 1012 erg cm−2, injected with a power-law spectral index of δ = 3 above a low-energy cutoff of Ec = 25 keV. The magnitudes of the velocity and magnetic field deviations depend on the imposed magnetic field, and can reach 0.35 km s−1 for LOS velocities, 90 G for LOS magnetic field, and 3% for continuum enhancement for the 1000 G imposed LOS magnetic field setup. For Etotal ≥ 3.0 × 1011 erg cm−2 models, the velocity and magnetic field deviations are most strongly correlated with the energy flux carried by ∼50 keV electrons, and the continuum enhancement is correlated with the synthesized ∼55-60 keV hard X-ray photon flux. The relatively low magnitudes of perturbations of the observables and absence of magnetic field sign reversals suggest that the considered RADYN beam heating models augmented with the uniform vertical magnetic field setups cannot explain the strong transient changes found in the SDO/HMI observations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab7b6a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysics ; Atmosphere ; Atmospheric models ; Data processing ; Energy flux ; Heating ; High energy electrons ; Line of sight ; Magnetic fields ; Magnetism ; Radiative transfer ; Solar activity ; Solar atmosphere ; Solar energy ; Solar flares ; Solar magnetic fields ; Solar observatories ; Solar photosphere ; Spectropolarimetry</subject><ispartof>The Astrophysical journal, 2020-04, Vol.893 (1), p.24</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-a8776825c6a5378133ff0d586edbfa338f3e6e14ab8f51cde547fc8e3ddc23523</citedby><cites>FETCH-LOGICAL-c445t-a8776825c6a5378133ff0d586edbfa338f3e6e14ab8f51cde547fc8e3ddc23523</cites><orcidid>0000-0001-5316-914X ; 0000-0003-0364-4883 ; 0000-0003-4144-2270 ; 0000-0002-4001-1295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7b6a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7b6a$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Sadykov, Viacheslav M.</creatorcontrib><creatorcontrib>Kosovichev, Alexander G.</creatorcontrib><creatorcontrib>Kitiashvili, Irina N.</creatorcontrib><creatorcontrib>Kerr, Graham S.</creatorcontrib><title>Response of SDO/HMI Observables to Heating of the Solar Atmosphere by Precipitating High-energy Electrons</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We perform an analysis of the line-of-sight (LOS) observables of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) for models of the solar atmosphere heated by precipitating high-energy electrons during solar flares. The radiative hydrodynamic (RADYN) flare models are obtained from the F-CHROMA database. The Stokes profiles for the Fe 6173 line observed by SDO/HMI are calculated using the radiative transfer code RH1.5D, assuming statistical equilibrium for atomic level populations, and imposing uniform background vertical magnetic fields of various strengths. The SDO/HMI observing sequence and LOS data processing pipeline algorithm are applied to derive the observables (continuum intensity, line depth, Doppler velocity, LOS magnetic field). Our results reveal that the strongest deviations of the observables from the actual spectroscopic line parameters are found for the model with a total energy deposited of Etotal = 1.0 × 1012 erg cm−2, injected with a power-law spectral index of δ = 3 above a low-energy cutoff of Ec = 25 keV. The magnitudes of the velocity and magnetic field deviations depend on the imposed magnetic field, and can reach 0.35 km s−1 for LOS velocities, 90 G for LOS magnetic field, and 3% for continuum enhancement for the 1000 G imposed LOS magnetic field setup. For Etotal ≥ 3.0 × 1011 erg cm−2 models, the velocity and magnetic field deviations are most strongly correlated with the energy flux carried by ∼50 keV electrons, and the continuum enhancement is correlated with the synthesized ∼55-60 keV hard X-ray photon flux. The relatively low magnitudes of perturbations of the observables and absence of magnetic field sign reversals suggest that the considered RADYN beam heating models augmented with the uniform vertical magnetic field setups cannot explain the strong transient changes found in the SDO/HMI observations.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Data processing</subject><subject>Energy flux</subject><subject>Heating</subject><subject>High energy electrons</subject><subject>Line of sight</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Radiative transfer</subject><subject>Solar activity</subject><subject>Solar atmosphere</subject><subject>Solar energy</subject><subject>Solar flares</subject><subject>Solar magnetic fields</subject><subject>Solar observatories</subject><subject>Solar photosphere</subject><subject>Spectropolarimetry</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUh4MoOKd3jwE9Wtc2TZMex5x2oEycgreQpi9bR9fUJBP239tS0Yt4erzH9_s9-BC6jMJbwhM2iSjhQUIom8iCFak8QqOf0zEahWGYBClh76fozLltv8ZZNkLVC7jWNA6w0Xh1t5zkTwu8LBzYT1nU4LA3OAfpq2bdE34DeGVqafHU74xrN2ABFwf8bEFVbeUHMK_WmwAasOsDntegvO0-nKMTLWsHF99zjN7u56-zPHhcPixm08dAJQn1geSMpTymKpWUMB4RonVYUp5CWWhJCNcEUogSWXBNI1UCTZhWHEhZqpjQmIzR1dDbWvOxB-fF1uxt070UMeFZzDjLoo4KB0pZ45wFLVpb7aQ9iCgUvVDR2xO9PTEI7SI3Q6Qy7W_nP_j1H7hst4JnREQiTkRbavIF_kuEdg</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Sadykov, Viacheslav M.</creator><creator>Kosovichev, Alexander G.</creator><creator>Kitiashvili, Irina N.</creator><creator>Kerr, Graham S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5316-914X</orcidid><orcidid>https://orcid.org/0000-0003-0364-4883</orcidid><orcidid>https://orcid.org/0000-0003-4144-2270</orcidid><orcidid>https://orcid.org/0000-0002-4001-1295</orcidid></search><sort><creationdate>20200410</creationdate><title>Response of SDO/HMI Observables to Heating of the Solar Atmosphere by Precipitating High-energy Electrons</title><author>Sadykov, Viacheslav M. ; Kosovichev, Alexander G. ; Kitiashvili, Irina N. ; Kerr, Graham S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-a8776825c6a5378133ff0d586edbfa338f3e6e14ab8f51cde547fc8e3ddc23523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Data processing</topic><topic>Energy flux</topic><topic>Heating</topic><topic>High energy electrons</topic><topic>Line of sight</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Radiative transfer</topic><topic>Solar activity</topic><topic>Solar atmosphere</topic><topic>Solar energy</topic><topic>Solar flares</topic><topic>Solar magnetic fields</topic><topic>Solar observatories</topic><topic>Solar photosphere</topic><topic>Spectropolarimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadykov, Viacheslav M.</creatorcontrib><creatorcontrib>Kosovichev, Alexander G.</creatorcontrib><creatorcontrib>Kitiashvili, Irina N.</creatorcontrib><creatorcontrib>Kerr, Graham S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadykov, Viacheslav M.</au><au>Kosovichev, Alexander G.</au><au>Kitiashvili, Irina N.</au><au>Kerr, Graham S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of SDO/HMI Observables to Heating of the Solar Atmosphere by Precipitating High-energy Electrons</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-04-10</date><risdate>2020</risdate><volume>893</volume><issue>1</issue><spage>24</spage><pages>24-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform an analysis of the line-of-sight (LOS) observables of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) for models of the solar atmosphere heated by precipitating high-energy electrons during solar flares. The radiative hydrodynamic (RADYN) flare models are obtained from the F-CHROMA database. The Stokes profiles for the Fe 6173 line observed by SDO/HMI are calculated using the radiative transfer code RH1.5D, assuming statistical equilibrium for atomic level populations, and imposing uniform background vertical magnetic fields of various strengths. The SDO/HMI observing sequence and LOS data processing pipeline algorithm are applied to derive the observables (continuum intensity, line depth, Doppler velocity, LOS magnetic field). Our results reveal that the strongest deviations of the observables from the actual spectroscopic line parameters are found for the model with a total energy deposited of Etotal = 1.0 × 1012 erg cm−2, injected with a power-law spectral index of δ = 3 above a low-energy cutoff of Ec = 25 keV. The magnitudes of the velocity and magnetic field deviations depend on the imposed magnetic field, and can reach 0.35 km s−1 for LOS velocities, 90 G for LOS magnetic field, and 3% for continuum enhancement for the 1000 G imposed LOS magnetic field setup. For Etotal ≥ 3.0 × 1011 erg cm−2 models, the velocity and magnetic field deviations are most strongly correlated with the energy flux carried by ∼50 keV electrons, and the continuum enhancement is correlated with the synthesized ∼55-60 keV hard X-ray photon flux. The relatively low magnitudes of perturbations of the observables and absence of magnetic field sign reversals suggest that the considered RADYN beam heating models augmented with the uniform vertical magnetic field setups cannot explain the strong transient changes found in the SDO/HMI observations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab7b6a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5316-914X</orcidid><orcidid>https://orcid.org/0000-0003-0364-4883</orcidid><orcidid>https://orcid.org/0000-0003-4144-2270</orcidid><orcidid>https://orcid.org/0000-0002-4001-1295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-04, Vol.893 (1), p.24 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_iop_journals_10_3847_1538_4357_ab7b6a |
source | Institute of Physics Open Access Journal Titles |
subjects | Algorithms Astrophysics Atmosphere Atmospheric models Data processing Energy flux Heating High energy electrons Line of sight Magnetic fields Magnetism Radiative transfer Solar activity Solar atmosphere Solar energy Solar flares Solar magnetic fields Solar observatories Solar photosphere Spectropolarimetry |
title | Response of SDO/HMI Observables to Heating of the Solar Atmosphere by Precipitating High-energy Electrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20SDO/HMI%20Observables%20to%20Heating%20of%20the%20Solar%20Atmosphere%20by%20Precipitating%20High-energy%20Electrons&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sadykov,%20Viacheslav%20M.&rft.date=2020-04-10&rft.volume=893&rft.issue=1&rft.spage=24&rft.pages=24-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab7b6a&rft_dat=%3Cproquest_O3W%3E2389278791%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389278791&rft_id=info:pmid/&rfr_iscdi=true |